[1] 宋耀. 交通监控视频中的车辆异常行为检测[D].南京:南京邮电大学,2015. SONG Yao.Vehicle abnormal behavior detection in traffic surveillance video[D].Nanjing:Nanjing University of Posts and Telecommunications, 2015. [2] LEI P R. A framework for anomaly detection in maritime trajectory behavior[J]. Knowledge & Information Systems, 2016, 47(1): 189-214. [3] LI Xiaolei, HAN Jiawei,KIM S. Motion-alert: automatic anomaly detection in massive moving objects[J]. Lecture Notes in Computer Science, 2006, 3975: 166-177. [4] YANG Wanqi, GAO Yang, CAO Longbing.Trasmil: a local anomaly detection framework based on trajectory segmentation and multi-instance learning[J]. Computer Vision & Image Understanding, 2013, 117(10): 1 273-1 286. [5] ZHANG Daqing, LI Nan, ZHOU Zhihua, et al.IBAT:detecting anomalous taxi trajectories from GPS traces[C].International Conference on Ubiquitous Computing.Association for Computing Machinery, 2011: 99-108. [6] JAE-GIL L, HAN Jiawei, LI Xiaolei. Trajectory outlier detection: a partition-and-detect framework[C].International Conference on Data Engineering. IEEE Computer Society, 2008: 140-149. [7] YU Yanwei,CAO Lei,ELKE R, et al. Detecting moving object outliers in massive-scale trajectory streams[C].International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 2014: 422-431. [8] DAS S, MATTHEWS B L, LAWRENCE R. Fleet level anomaly detection of aviation safety data[C]. Prognostics and Health Management. IEEE, 2011: 1-10. [9] 赵元棣, 王超, 李善梅,等. 基于重采样的终端区飞行轨迹可信聚类方法[J]. 西南交通大学学报, 2017, 52(4): 817-825. ZHAO Yuandi, WANG Chao, LI Shanmei, et al. Reliable clustering algorithm for terminal area flight trajectory[J]. Journal of Southwest Jiaotong University, 2017, 52(4): 817-825. [10] 王超, 徐肖豪, 王飞. 基于航迹聚类的终端区进场程序管制适用性分析[J]. 南京航空航天大学学报, 2013, 45(1): 130-139. WANG Chao, XU Xiaohao, WANG Fei.Analysis of the applicability of the regulation of entry procedures in terminal area based on track clustering[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1): 130-139. [11] 李红松, 邓旭东. 统计数据分析方法与技术[M]. 北京:经济管理出版社, 2014: 24-54. |