China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (2): 99-106.doi: 10.16265/j.cnki.issn1003-3033.2022.02.014
• Safety engineering technology • Previous Articles Next Articles
ZHANG Xinsheng(), CHANG Yingge
Received:
2021-11-20
Revised:
2022-01-12
Online:
2022-08-18
Published:
2022-08-28
ZHANG Xinsheng, CHANG Yingge. Prediction of external corrosion rate of offshore oil and gas pipelines based on FA-BAS-ELM[J]. China Safety Science Journal, 2022, 32(2): 99-106.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.02.014
Tab.1
Test data of corrosion
序号 | V1/℃ | V2/(mg·L-1) | V3/(103mg·L-1) | V4 | V5/mV | V6/(μA·cm-2) |
---|---|---|---|---|---|---|
1 | 25.90 | 6.71 | 30.10 | 5.10 | 378 | 16.40 |
2 | 29.35 | 6.09 | 29.00 | 6.30 | 400 | 16.90 |
3 | 27.90 | 6.18 | 31.50 | 7.00 | 363 | 15.57 |
4 | 24.00 | 7.95 | 30.20 | 8.10 | 324 | 13.65 |
5 | 28.00 | 5.05 | 31.40 | 9.20 | 240 | 13.24 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
46 | 24.31 | 6.42 | 40.67 | 7.88 | 250 | 8.75 |
47 | 24.11 | 6.38 | 41.00 | 7.98 | 228 | 8.99 |
48 | 17.45 | 7.48 | 34.08 | 8.10 | 135 | 17.05 |
49 | 21.95 | 8.28 | 34.64 | 7.95 | 113 | 17.34 |
50 | 27.19 | 4.91 | 33.50 | 7.99 | 275 | 15.48 |
Tab.3
Component matrix
变量 | 旋转前 | 旋转后 | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | |
V4 | 0.828 | 0.112 | -0.182 | -0.209 | -0.894 | -0.24 | -0.106 | -0.026 |
V5 | 0.777 | 0.091 | -0.03 | 0.606 | 0.73 | -0.316 | 0.371 | -0.064 |
V2 | -0.744 | 0.327 | -0.248 | 0.382 | 0.044 | 0.961 | -0.027 | -0.105 |
V1 | -0.071 | -0.821 | 0.475 | 0.18 | 0.235 | -0.018 | 0.961 | 0.032 |
V3 | 0.031 | 0.666 | 0.742 | -0.014 | -0.011 | -0.097 | 0.024 | 0.992 |
Tab.5
Data after dimensionality reduction
序号 | F1 | F2 | F3 | F4 |
---|---|---|---|---|
1 | 2.933 4 | 0.569 0 | -1.110 6 | 0.170 7 |
2 | 1.541 7 | 0.060 8 | 0.571 9 | -0.182 3 |
3 | 0.788 4 | 0.033 6 | 0.315 9 | 0.182 3 |
4 | -0.170 6 | 0.563 4 | -0.563 9 | -0.081 7 |
5 | -2.071 7 | -0.581 1 | 1.122 2 | 0.016 5 |
︙ | ︙ | ︙ | ︙ | ︙ |
46 | -0.342 8 | 0.275 4 | -0.664 1 | 1.694 9 |
47 | -0.544 0 | 0.303 5 | -0.705 3 | 1.759 9 |
48 | -0.578 9 | 0.752 0 | -2.995 2 | 0.735 8 |
49 | -0.995 1 | 1.430 3 | -1.405 6 | 0.896 1 |
50 | -0.592 1 | -0.498 1 | 0.354 3 | 0.457 5 |
Tab.6
Optimization results of input weight and hidden layer threshold
隐含 节点 | 输入节点 | 隐含层阈值 | |||
---|---|---|---|---|---|
X1 | X2 | X3 | X4 | bp | |
h1 | -2.146 5 | -1.118 8 | 2.862 8 | 0.851 5 | -7.466 3 |
h2 | -0.086 0 | 1.720 7 | 6.081 3 | -2.988 9 | 2.805 4 |
h3 | -0.118 2 | 1.405 5 | 3.918 2 | 2.901 0 | -0.859 7 |
h4 | -4.865 5 | 1.820 4 | -5.489 1 | 3.378 7 | -0.766 4 |
h5 | -4.325 1 | -0.844 9 | -5.075 8 | 3.446 6 | -1.247 4 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
h15 | 0.730 7 | 2.062 7 | -4.967 9 | -1.011 6 | 1.134 2 |
Tab.7
Prediction results of models
序号 | 实际值 | FA-ELM | FA-BAS-BP | FA-FOA-ELM | FA-BAS-ELM | ||||
---|---|---|---|---|---|---|---|---|---|
预测值 | RE/% | 预测值 | RE/% | 预测值 | RE/% | 预测值 | RE/% | ||
1 | 11.45 | 10.631 9 | 7.15 | 12.382 3 | 8.14 | 11.347 0 | 0.90 | 11.410 2 | 0.35 |
2 | 14.60 | 11.051 7 | 24.30 | 14.754 5 | 1.06 | 14.371 0 | 1.57 | 14.701 6 | 0.70 |
3 | 9.63 | 11.053 4 | 14.78 | 9.645 7 | 0.16 | 9.684 7 | 0.57 | 10.136 6 | 5.26 |
4 | 16.28 | 18.141 0 | 11.43 | 15.820 2 | 2.82 | 16.217 2 | 0.39 | 16.061 8 | 1.34 |
5 | 11.83 | 13.679 2 | 15.63 | 10.449 4 | 11.67 | 12.675 4 | 7.51 | 12.068 3 | 2.01 |
6 | 17.11 | 15.415 7 | 9.90 | 14.959 3 | 12.57 | 15.531 7 | 9.22 | 16.765 | 2.02 |
7 | 7.94 | 10.573 0 | 33.16 | 7.722 8 | 2.73 | 7.707 9 | 2.92 | 8.077 9 | 1.74 |
[1] |
doi: 10.1016/j.ijpvp.2017.10.003 |
[2] |
王如君, 王天瑜. 灰色-马尔科夫链模型在埋地油气管道腐蚀预测中的应用[J]. 中国安全生产科学技术, 2015, 11(4):102-106.
|
|
|
[3] |
张新生, 叶晓艳. 不同初始条件的UGM(1,1)管道腐蚀预测建模研究[J]. 中国安全科学学报, 2019, 29(3):63-69.
doi: 10.16265/j.cnki.issn1003-3033.2019.03.011 |
doi: 10.16265/j.cnki.issn1003-3033.2019.03.011 |
|
[4] |
骆正山, 陈晨, 王哲. 优化的Gray Markov模型在埋地管道腐蚀速率预测中的应用[J]. 腐蚀与防护, 2019, 40(5):313-317.
|
|
|
[5] |
经建芳, 李康春, 邓富康, 等. 油气管道腐蚀的灰色线性回归组合预测模型[J]. 油气储运, 2015, 34(12):1300-1304.
|
|
|
[6] |
任南南, 商永滨, 陈军斌, 等. 灰色模型在采油井管材腐蚀速率预测中的应用[J]. 热加工工艺, 2020, 49(4):34-37.
|
|
|
[7] |
许宏良, 殷苏民. 基于改进BP神经网络优化的管道腐蚀速率预测模型研究[J]. 表面技术, 2018, 47(2):177-181.
|
|
|
[8] |
|
[9] |
王盼锋, 王寿喜, 马钢, 等. 基于PCA-PSO-SVM模型的海底多相流管道内腐蚀速率预测[J]. 安全与环境工程, 2020, 27(2):183-189.
|
|
|
[10] |
doi: 10.1088/1755-1315/242/2/022023 |
[11] |
doi: 10.3390/jmse8100766 |
[12] |
周德慧. 物流上市公司融资结构影响因素实证研究[J]. 商业经济研究, 2020(22):176-178.
|
|
|
[13] |
张长鲁. 基于因子分析的煤质指标降维及其可视化应用[J]. 煤炭技术, 2017, 36(1):310-313.
|
|
|
[14] |
高放, 包燕平, 王敏, 等. 基于FA-ELM的转炉终点磷含量预测模型[J]. 钢铁, 2020, 55(12):24-30.
|
|
|
[15] |
王甜甜, 刘强. 基于BAS-BP模型的风暴潮灾害损失预测[J]. 海洋环境科学, 2018, 37(3):457-463.
|
|
|
[16] |
doi: 10.1016/j.procs.2020.02.059 |
[17] |
李易安, 骆正山. 基于KPCA-ICS-ELM算法的埋地管线土壤腐蚀深度预测[J]. 中国安全科学学报, 2020, 30(12):100-105.
doi: 10.16265/j.cnki.issn 1003-3033.2020.12.014 |
doi: 10.16265/j.cnki.issn 1003-3033.2020.12.014 |
|
[18] |
温廷新, 靳露露. 基于预处理的IFOA-ELM煤与瓦斯突出预测模型[J]. 中国安全科学学报, 2020, 30(1):35-41.
doi: 10.16265/j.cnki.issn1003-3033.2020.01.006 |
doi: 10.16265/j.cnki.issn1003-3033.2020.01.006 |
|
[19] |
骆正山, 田珮琦. RS-PSO-ELM下腐蚀管道失效压力预测[J]. 中国安全科学学报, 2021, 31(3):28-34.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.004 |
doi: 10.16265/j.cnki.issn1003-3033.2021.03.004 |
|
[20] |
邓志安, 李姝仪, 李晓坤, 等. 基于模糊神经网络的海洋管线腐蚀速率预测新方法[J]. 中国腐蚀与防护学报, 2015, 35(6):571-576.
|
|
[1] | WEN Tingxin, CHEN Yilin. Prediction model of rockburst intensity grade based on Hellinger distance and AHDPSO-ELM [J]. China Safety Science Journal, 2022, 32(11): 38-46. |
[2] | LUO Zhengshan, TIAN Peiqi. Prediction of failure pressure of corrosion pipelines based on RS-PSO-ELM [J]. China Safety Science Journal, 2021, 31(3): 28-34. |
[3] | XIE Bo, SHI Fuqiang, LIAO Xueyan, MA Sheng, YANG Wei, LU Xiangxiang. Slope displacement prediction method based on EEMD-PSO-ELM model [J]. China Safety Science Journal, 2020, 30(3): 157-162. |
[4] | LI Yian, LUO Zhengshan. Soil corrosion depth prediction of buried pipelines based on KPCA-ICS-ELM algorithm [J]. China Safety Science Journal, 2020, 30(12): 100-105. |
[5] | WEN Tingxin, JIN Lulu. IFOA-ELM prediction model of coal and gas outburst based on preprocessing [J]. China Safety Science Journal, 2020, 30(1): 35-41. |
[6] | MAO Zhiyong, HUANG Chunjuan, LU Shichang, HAN Rongyue. KPCA-MPSO-ELM based model for discrimination of mine water inrush source [J]. China Safety Science Journal, 2018, 28(8): 111-116. |
[7] | SHAO Liangshan, ZHOU Yu. Prediction of destroyed floor depth based on SO-ELM-Boosting model [J]. China Safety Science Journal, 2018, 28(4): 24-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||