China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (2): 173-178.doi: 10.16265/j.cnki.issn1003-3033.2023.02.0017
• Safety engineering technology • Previous Articles Next Articles
YANG Yu1(), YANG Xin2, WANG Ying1, ZHAI Chi3, ZHANG Hao1,**(
)
Received:
2022-09-22
Revised:
2022-12-15
Online:
2023-02-28
Published:
2023-08-28
YANG Yu, YANG Xin, WANG Ying, ZHAI Chi, ZHANG Hao. Research on TE process fault diagnosis based on mini-1D-CNN model[J]. China Safety Science Journal, 2023, 33(2): 173-178.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.02.0017
Tab.1
Results of training set and test set of mini-1D-CNN model
状态 类别 | 训练集 | 测试集 | ||
---|---|---|---|---|
FDR | FPR | FDR | FPR | |
正常 | 0.989 | 0.054 | 0.969 | 0.020 |
故障1 | 1.000 | 0.000 | 0.999 | 0.000 |
故障2 | 0.999 | 0.000 | 0.981 | 0.000 |
故障4 | 1.000 | 0.001 | 0.996 | 0.001 |
故障5 | 1.000 | 0.000 | 0.998 | 0.000 |
故障7 | 1.000 | 0.000 | 1.000 | 0.000 |
故障8 | 0.988 | 0.001 | 0.981 | 0.001 |
故障10 | 0.981 | 0.002 | 0.941 | 0.001 |
故障11 | 0.984 | 0.003 | 0.917 | 0.003 |
故障12 | 0.991 | 0.000 | 0.974 | 0.001 |
故障13 | 0.970 | 0.003 | 0.934 | 0.002 |
故障14 | 0.995 | 0.002 | 0.942 | 0.003 |
故障17 | 0.959 | 0.003 | 0.925 | 0.003 |
故障18 | 0.956 | 0.002 | 0.941 | 0.002 |
故障19 | 0.999 | 0.000 | 0.995 | 0.000 |
故障20 | 0.963 | 0.003 | 0.941 | 0.001 |
平均值 | 0.986 | 0.005 | 0.965 | 0.002 |
Tab.2
Comparison of FDR of different methods
状态 类别 | DCNN (50) | DCNN (31) | 1D-CNN (50) | mini-1D- CNN (31) |
---|---|---|---|---|
正常 | 0.808 | 0.890 | 0.946 | 0.969 |
故障1 | 0.988 | 1.000 | 0.996 | 0.999 |
故障2 | 1.000 | 0.976 | 0.987 | 0.981 |
故障4 | 1.000 | 1.000 | 0.999 | 0.996 |
故障5 | 1.000 | 1.000 | 0.996 | 0.998 |
故障7 | 1.000 | 1.000 | 1.000 | 1.000 |
故障8 | 0.940 | 0.910 | 0.981 | 0.981 |
故障10 | 0.875 | 0.917 | 0.941 | 0.941 |
故障11 | 1.000 | 1.000 | 0.916 | 0.917 |
故障12 | 0.989 | 0.989 | 0.978 | 0.974 |
故障13 | 0.844 | 0.870 | 0.952 | 0.934 |
故障14 | 0.938 | 0.963 | 0.935 | 0.942 |
故障17 | 0.945 | 0.973 | 0.913 | 0.925 |
故障18 | 0.921 | 0.899 | 0.946 | 0.941 |
故障19 | 0.962 | 0.987 | 0.996 | 0.995 |
故障20 | 0.896 | 0.922 | 0.937 | 0.941 |
平均值 | 0.947 | 0.958 | 0.960 | 0.965 |
Tab.3
Characteristic parameters rank the contribution rate of model accuracy
排 名 | 特征参数 | 训练集准确 率增长量 | 测试集准确 率增长量 |
---|---|---|---|
1 | 产品分离器温度 | 0.094 5 | 0.120 9 |
2 | 汽提器温度 | 0.080 5 | 0.074 4 |
3 | 反应器冷却水出口温度 | 0.074 1 | 0.067 4 |
4 | 反应器冷却水流量 | 0.039 5 | 0.066 9 |
5 | 反应器压力 | 0.077 5 | 0.066 2 |
6 | 排放速度(流9) | 0.070 7 | 0.044 8 |
7 | 总进料量(流4) | 0.039 6 | 0.041 4 |
8 | 产品分离器压力 | 0.038 9 | 0.023 1 |
9 | 分离器冷却水出口温度 | 0.008 3 | 0.022 5 |
10 | 反应器温度 | 0.023 7 | 0.021 8 |
[1] |
万婧, 容振乾, 赵远飞, 等. 2010—2019年我国化工行业较大以上生产安全事故统计分析及启示[J]. 工业安全与环保, 2021, 47(5): 59-63.
|
|
|
[2] |
王海顺, 许铭, 辛盼盼, 等. 我国生产安全事故经济损失统计制度改革建议[J]. 中国安全科学学报, 2019, 29(10): 141-146.
doi: 10.16265/j.cnki.issn1003-3033.2019.10.022 |
doi: 10.16265/j.cnki.issn1003-3033.2019.10.022 |
|
[3] |
王斌, 施祖建, 匡蕾. 基于改进KFDA和RW v-SVM的化工生产系统故障快速诊断[J]. 中国安全科学学报, 2013, 23(8): 84-89.
|
|
|
[4] |
|
[5] |
doi: 10.1016/j.compchemeng.2017.02.041 |
[6] |
doi: 10.1016/j.compchemeng.2018.04.009 |
[7] |
doi: 10.1109/TIE.41 |
[8] |
doi: S0019-0578(19)30290-3 pmid: 31324340 |
[9] |
邓露, 张阳, 戴一阳, 等. 一种基于动态卷积神经网络的故障诊断方法[C]. 2020年过程系统工程年会, 2020: 1-7.
|
|
|
[10] |
|
[11] |
|
[12] |
doi: 10.1145/3065386 |
[13] |
|
[14] |
|
[15] |
doi: 10.1016/j.isatra.2021.04.042 |
[16] |
|
[17] |
卢春红. 基于数据驱动的故障检测与诊断技术及其应用研究[D]. 无锡: 江南大学, 2015.
|
|
|
[18] |
doi: 10.1038/s41598-018-37186-2 |
[19] |
doi: 10.1016/j.compchemeng.2020.106755 |
[1] | WANG Yantao, GAO Yi, SHI Tongyu. A review of flight control system fault research based on QAR data [J]. China Safety Science Journal, 2024, 34(4): 1-9. |
[2] | ZHANG Bin, ZHANG Xinxin, YANG Haitao. Neural network-based fault diagnosis algorithm for vibration feeder [J]. China Safety Science Journal, 2023, 33(S2): 55-59. |
[3] | SHANG Shuhong, CAO Liang, LU Wei. Fault diagnosis algorithm for medium draining screen based on wavelet transform feature extraction [J]. China Safety Science Journal, 2023, 33(S2): 233-237. |
[4] | LIU Xin, WANG Yajun, YAO Meichang, SU Lei, WANG Peng. Online monitoring of hydraulic brake of mine hoist based on LabVIEW [J]. China Safety Science Journal, 2023, 33(S1): 145-149. |
[5] | YU Wei, WANG Zhipeng, LIU Shuo, HE Gang. Inter-turn short circuit fault diagnosis for motors based on multi-level fine model [J]. China Safety Science Journal, 2022, 32(6): 95-102. |
[6] | LIN Haixiang, LU Ran, LU Renjie, LI Xinqin, ZHAO Zhengxiang, BAI Wansheng. Fault diagnosis of high-speed railway on-board equipment based on BiLSTM-CBA hybrid model [J]. China Safety Science Journal, 2022, 32(6): 79-86. |
[7] | LI Gang, LU Peiling, YANG Yong. Research on application of ZPW-2000 fault diagnosis algorithm for track circuits [J]. China Safety Science Journal, 2022, 32(6): 53-59. |
[8] | XING Yulong, WANG Jian, SHANGGUAN Wei, PENG Cong, ZHU Linfu. Track circuit fault diagnosis method for massive imbalanced data [J]. China Safety Science Journal, 2022, 32(5): 112-118. |
[9] | ZHAO Dan, SHEN Zhiyuan, LIU Xiaoqing. Online fault diagnosis of mine ventilation system based on OCISVM [J]. China Safety Science Journal, 2022, 32(10): 76-82. |
[10] | GU Yingkui, LIU Ping, LIN Zhonghai, QIU Guangqi. Fault diagnosis method of rolling bearing based on Kurtogram and DSCN [J]. China Safety Science Journal, 2021, 31(6): 99-105. |
[11] | CHEN Zhihuang, LIU Guoheng, WANG Yingying, ZHU Chunli, SHAN Jian, ZHAI Xiaodong. Fault diagnosis of subsea collet connector based on dynamic Bayesian network [J]. China Safety Science Journal, 2020, 30(5): 81-87. |
[12] | YU Jingzhi, YAN Fei, NIU Ru. Formal safety analysis method based on Petri net [J]. China Safety Science Journal, 2019, 29(S2): 138-143. |
[13] | . A Fast Method for Diagnosing Fault in Chemical Production System Based on Improved KFDA and RW v-SVM [J]. China Safety Science Journal, 2013, 23(8): 84-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||