China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (9): 87-98.doi: 10.16265/j.cnki.issn1003-3033.2024.09.1631
• Safety engineering technology • Previous Articles Next Articles
LI Gang(), DU Yabo, YANG Qinghe, MAO Mengying, JIA Dongping
Received:
2024-03-14
Revised:
2024-06-18
Online:
2024-09-28
Published:
2025-03-28
CLC Number:
LI Gang, DU Yabo, YANG Qinghe, MAO Mengying, JIA Dongping. Obstacle detection on mining roads based on multi-scale feature fusion and attention mechanism[J]. China Safety Science Journal, 2024, 34(9): 87-98.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.09.1631
Table 3
Comparison of different network models
模型 | 输入尺寸 | 精确率/% | 速度/(帧·s-1) | 参数量/MB | 计算量/GB | 坑洞精度 |
---|---|---|---|---|---|---|
SSD | 300×300 | 61.37 | 176.3 | 24.41 | 30.68 | 41.74 |
Faster-RCNN | 800×800 | 80.36 | 48.0 | 41.37 | 134.09 | 61.57 |
RetinaNet | 600×600 | 84.50 | 38.1 | 36.43 | 82.45 | 65.54 |
EfficientDet-d3 | 896×896 | 78.72 | 42.5 | 18.44 | 108.20 | 58.70 |
RepVGG-A2 | 512×512 | 83.99 | 52.4 | 41.12 | 57.66 | 67.39 |
YOLOX-m | 640×640 | 82.04 | 95.6 | 25.28 | 36.76 | 61.68 |
YOLOX-tiny | 640×640 | 77.54 | 133.0 | 5.03 | 7.58 | 56.88 |
Our Model | 640×640 | 91.88 | 68.7 | 17.80 | 20.77 | 76.51 |
Table 5
Impact of different attention mechanisms on model performance
注意力 模块 | VOC精 度/% | 矿山精 度/% | 坑洞精 度/% | 参数量/ MB | 计算量/ MB |
---|---|---|---|---|---|
Baseline | 89.30 | 88.89 | 73.65 | +0 | +0 |
SENet | 90.95 | 89.39 | 74.80 | +0.021 | 3.072 |
CBAM | 90.78 | 88.54 | 72.67 | +0.003 | 6.144 |
CA | 90.87 | 88.98 | 73.56 | +0.012 | 7.168 |
ECA | 90.97 | 89.40 | 75.05 | +0 | 2.048 |
SimAM | 90.89 | 89.40 | 74.92 | +0 | +0 |
Table 6
Ablation experiment
数据扩增 | 数据均衡 | 多尺度 | Bi-FPN | SimAM | QFL | SIoU | VOC数据精度 | 矿山数据精度 | 坑洞精度 |
---|---|---|---|---|---|---|---|---|---|
— | — | — | — | — | — | — | 88.71 | 73.67 | 34.24 |
√ | — | — | — | — | — | — | 88.71 | 83.69 | 65.52 |
— | √ | — | — | — | — | — | 88.71 | 87.82 | 72.69 |
— | √ | √ | — | — | — | — | 88.90 | 88.49 | 73.30 |
— | √ | √ | √ | — | — | — | 89.30 | 88.89 | 73.65 |
— | √ | √ | √ | √ | — | — | 90.89 | 89.40 | 74.98 |
— | √ | √ | √ | √ | √ | — | 92.13 | 90.56 | 75.66 |
— | √ | √ | √ | √ | √ | √ | 93.21 | 91.88 | 77.12 |
[1] |
付恩三, 刘光伟, 白润才, 等. 大数据时代矿山协同监管监察新思路[J]. 中国安全科学学报, 2023, 33(8): 39-44.
doi: 10.16265/j.cnki.issn1003-3033.2023.08.2035 |
doi: 10.16265/j.cnki.issn1003-3033.2023.08.2035 |
|
[2] |
范冰倩, 董秉聿, 王彪, 等. 基于深度学习的地铁施工作业人员不安全行为识别与应用[J]. 中国安全科学学报, 2023, 33(1): 41-47.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0874 |
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0874 |
|
[3] |
陈志发, 余贵珍, 张传莹, 等. 露天矿区无人驾驶行车风险评估及防控策略仿真研究[J]. 煤炭学报, 2023, 48(4): 1782-1797.
|
|
|
[4] |
张彦斐, 封子晗, 张嘉恒, 等. 基于特征融合的果园非结构化道路识别方法[J]. 农业机械学报, 2023, 54(7):35-44,67.
|
|
|
[5] |
卢才武, 马玲, 阮顺领. 矿区复杂道路边缘检测[J]. 测绘科学, 2020, 45(9):123-131.
|
|
|
[6] |
郝明, 林惠晶, 高彦彦. 基于改进主动轮廓模型的无人机影像矿区地裂缝提取[J]. 地球信息科学学报, 2022, 24(12):2448-2457.
doi: 10.12082/dqxxkx.2022.220376 |
|
|
[7] |
|
[8] |
马永杰, 马芸婷, 程时升, 等. 基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231.
|
|
|
[9] |
|
[10] |
张炳力, 秦浩然, 江尚, 等. 基于 RetinaNet 及优化损失函数的夜间车辆检测方法[J]. 汽车工程, 2021, 43(8): 1195-1202.
|
|
|
[11] |
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
石祥滨, 贾贺林. 基于控制点网格优化的航拍图像拼接算法[J]. 计算机应用与软件, 2020, 37(5): 303-308.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[1] | LI Hua, CHEN Bing, WU Lizhou, ZHONG Xingrun. Fire lane occupancy detection based on multi-scale features [J]. China Safety Science Journal, 2024, 34(7): 163-169. |
[2] | JIA Guimin, CHENG Yu, QI Mengfei. Multi-scale attention feature-enhanced fusion of a new network for infrared small object detection [J]. China Safety Science Journal, 2024, 34(6): 90-98. |
[3] | QI Lei, LI Ning, LIANG Wei, WANG Zheng, LIU Ziliang. Blade defect detection of U-Net network based on attention mechanism [J]. China Safety Science Journal, 2024, 34(5): 139-146. |
[4] | WANG Xinglong, XU Yanfeng. Aircraft taxiing trajectory prediction and conflict risk identification in airfield area based on AM-LSTM [J]. China Safety Science Journal, 2024, 34(1): 116-124. |
[5] | ZHAO Jiangping, LIU Xingxing, ZHANG Xiangzhuo. Research on image recognition technology for external scaffold hidden danger based on improved YOLOv5s [J]. China Safety Science Journal, 2023, 33(12): 60-66. |
[6] | ZHANG Jun, YIN Liu, GONG Xinfei, XU Hehua. Small target smoke detection algorithm based on improved YOLOv5 [J]. China Safety Science Journal, 2023, 33(11): 75-81. |
[7] | HUANG Zhenzhen, XIAO Shuo, WANG Yu, CHEN Wei, WANG Shengzhi, JIANG Haifeng. Human activity recognition model of railway workers [J]. China Safety Science Journal, 2022, 32(6): 17-22. |
[8] | ZHAO Hongcheng, TIAN Xiuxia, YANG Zesen, BAI Wanrong. Safety helmet wearing detection algorithm in complex construction environment based on improved YOLOv3 [J]. China Safety Science Journal, 2022, 32(5): 194-200. |
[9] | XIA Zhanjie, ZHANG Beike, GAO Dong. Named entity recognition of HSE inspection minutes based on data enhancement [J]. China Safety Science Journal, 2022, 32(12): 53-62. |
[10] | WU Si, ZHANG Xuguang, FANG Yinfeng. Method of crowd counting based on attention mechanism [J]. China Safety Science Journal, 2022, 32(1): 127-134. |
[11] | YANG Lixia, XU Maozeng, CHEN Renxiang. Study on recognition of traffic terrorist attacks with limited data samples [J]. China Safety Science Journal, 2021, 31(8): 30-37. |
[12] | HAO Yongmei, DU Zhanghao, YANG Wenbin, XING Zhixiang, JIANG Juncheng, YUE Yunfei. Pipeline leakage signal identification based on improved ELMD and multi-scale entropy [J]. China Safety Science Journal, 2019, 29(8): 105-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||