[1] |
张新生, 王旭业, 张莹莹, 等. 海底腐蚀管道剩余寿命预测与维修策略研究[J]. 中国安全科学学报, 2022, 32(3):41-47.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.006
|
|
ZHANG Xinsheng, WANG Xuye, ZHANG Yingying, et al. Research on remaining life prediction and maintenance strategy of corroded submarine pipelines[J]. China Safety Science Journal, 2022, 32(3):41-47.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.006
|
[2] |
刘金海, 赵贺, 神祥凯, 等. 基于漏磁内检测的自监督缺陷检测方法[J]. 仪器仪表学报, 2020, 41(9):180-187.
|
|
LIU Jinhai, ZHAO He, SHEN Xiangkai, et al. Self-supervised defect detection method based on magnetic flux leakage internal detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(9):180-187.
|
[3] |
毕傲睿, 骆正山, 宋莹莹, 等. 内腐蚀海底管道剩余强度的FOA-GRNN模型[J]. 中国安全科学学报, 2020, 30(6):78-83.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.012
|
|
BI Aorui, LUO Zhengshan, SONG Yingying, et al. Residual strength analysis of internally corroded submarine pipeline based on FOA-GRNN model[J]. China Safety Science Journal, 2020, 30(6):78-83.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.012
|
[4] |
曲杰, 孙玉江, 苑世宁, 等. 某海底管道内腐蚀原因分析及防护[J]. 焊管, 2022, 45(12):42-45.
|
|
QU Jie, SUN Yujiang, YUAN Shining, et al. Cause analysis and protection of internal corrosion in subsea pipeline[J]. Welded Pipe and Tube, 2022, 45(12):42-45.
|
[5] |
卢森骧, 神祥凯, 张俊楠, 等. 基于三轴融合的漏磁内检测数据缺陷反演方法研究[J]. 仪器仪表学报, 2021, 42(12):245-253.
|
|
LU Senxiang, SHEN Xiangkai, ZHANG Junnan, et al. Research on defect inversion method of magnetic flux leakage internal inspection data based on triaxial fusion[J]. Chinese Journal of Scientific Instrument, 2021, 42(12):245-253.
|
[6] |
郝永梅, 杜璋昊, 杨文斌, 等. 基于改进ELMD和多尺度熵的管道泄漏信号识别[J]. 中国安全科学学报, 2019, 29(8):105-111.
doi: 10.16265/j.cnki.issn1003-3033.2019.08.017
|
|
HAO Yongmei, DU Zhanghao, YANG Wenbin, et al. Pipeline leakage signal identification based on improved ELMD and multi-scale entropy[J]. China Safety Science Journal, 2019, 29(8):105-111.
doi: 10.16265/j.cnki.issn1003-3033.2019.08.017
|
[7] |
王超群, 梁伟, 梁晓斌. CEEMD-FCM模型下的管道缺陷识别方法[J]. 中国安全科学学报, 2020, 30(1):87-93.
doi: 10.16265/j.cnki.issn1003-3033.2020.01.014
|
|
WANG Chaoqun, LIANG Wei, LIANG Xiaobin. Pipeline defect recognition method based on CEEMD-FCM[J]. China Safety Science Journal, 2020, 30(1):87-93.
doi: 10.16265/j.cnki.issn1003-3033.2020.01.014
|
[8] |
蹇清平, 艾志久, 张勇, 等. 基于支持向量机的油管内外表面缺陷识别方法[J]. 机械科学与技术, 2015, 34(1):118-123.
|
|
JIAN Qingping, AI Zhijiu, ZHANG Yong, et al. Identification of oil tube defects on internal and external surfaces based on SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(1):118-123.
|
[9] |
赵翰学, 张咪, 郭岩宝, 等. 基于机器学习的管道金属损失缺陷识别方法[J]. 石油机械, 2020, 48(12):138-145.
|
|
ZHAO Hanxue, ZHANG Mi, GUO Yanbao, et al. Recognition method of pipeline metal loss defects based on machine learning[J]. China Petroleum Machinery, 2020, 48(12):138-145.
|
[10] |
刘金海, 付明芮, 唐建华. 基于漏磁内检测的缺陷识别方法[J]. 仪器仪表学报, 2016, 37(11):2572-2581.
|
|
LIU Jinhai, FU Mingrui, TANG Jianhua. MFL inner detection based defect recognition method[J]. Chinese Journal of Scientific Instrument, 2016, 37(11):2572-2581.
|
[11] |
王宏安, 陈国明. 基于深度学习的漏磁检测缺陷识别方法[J]. 石油机械, 2020, 48(5):127-132.
|
|
WANG Hongan, CHEN Guoming. Magnetic flux leakage defect detection based on deep learning[J]. China Petroleum Machinery, 2020, 48(5):127-132.
|
[12] |
杨理践, 曹辉. 基于深度学习的管道焊缝法兰组件识别方法[J]. 仪器仪表学报, 2018, 39(2):193-202.
|
|
YANG Lijian, CAO Hui. Deep learning based weld and flange identification in pipeline[J]. Chinese Journal of Scientific Instrument, 2018, 39(2):193-202.
|
[13] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
|