China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (8): 93-100.doi: 10.16265/j.cnki.issn1003-3033.2023.08.1897
• Safety engineering technology • Previous Articles Next Articles
Received:
2023-02-17
Revised:
2023-05-20
Online:
2023-10-08
Published:
2024-02-28
LI Shanmei, ZHOU Xiangzhi. Prediction of airport departure delay based on S2S-CNN-GRU[J]. China Safety Science Journal, 2023, 33(8): 93-100.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.08.1897
Tab.1
Algorithm pseudo code
序号 | 内容 |
---|---|
1 | 输入数据集,进行数据处理,统计各时段机场离港航班平均延误时间 |
2 | 简单分析数据,绘制机场离港航班平均延误曲线图 |
3 | 设置超参数 |
4 | 数据最大最小标准化 |
5 | 划分训练集、测试集 |
6 | 将平均延误时间序列及航班流量序列合并,得到时空特征融合的时间序列送入编码器编码,得到context向量 |
7 | 使用RV层将编码器输出向量中的每个时间步长的值重复2次,作为解码过程的输入 |
8 | 定义一个GRU神经网络作为解码器,解析RV层状态向量并学习预测,得到预测结果 |
9 | 将预测结果送入TD包装的全连接层并输出 |
10 | 预测结果可视化并分析 |
[1] |
中国民用航空局. 2020年民航行业发展统计公报[R], 2020.
|
[2] |
陈志杰. 空域管理理论与方法[M]. 北京: 科学出版社, 2012: 113-120.
|
[3] |
岳仁田, 张知波. 脆弱性多因素耦合作用下空管亚安全态识别[J]. 中国安全科学学报, 2022, 32(4): 8-14.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.002 |
doi: 10.16265/j.cnki.issn1003-3033.2022.04.002 |
|
[4] |
doi: 10.1038/nature14539 |
[5] |
|
[6] |
doi: 10.1016/j.procs.2016.09.321 |
[7] |
王慧, 李永亮, 丁辉, 等. 基于深度学习的航班延误预测方法[J]. 指挥信息系统与技术, 2020, 11(5): 11-17.
|
|
|
[8] |
吴仁彪, 赵娅倩, 屈景怡, 等. 基于 CBAM-CondenseNet 的航班延误波及预测模型[J]. 电子与信息学报, 2021, 43(1): 187-195.
|
|
|
[9] |
王春政, 胡明华, 杨磊, 等. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874.
doi: 10.12305/j.issn.1001-506X.2022.03.19 |
doi: 10.12305/j.issn.1001-506X.2022.03.19 |
|
[10] |
|
[11] |
刘擘龙, 张宏立, 王聪, 等. 基于序列到序列和注意力机制的超短期风速预测[J]. 太阳能学报, 2021, 42(9): 286-294.
|
|
|
[12] |
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[13] |
doi: 10.32604/iasc.2022.020032 |
[14] |
|
[15] |
魏志强, 李晓晨. 基于尾流安全评估的航空器分类方法改进研究[J]. 中国安全科学学报, 2022, 32(7): 70-76.
doi: 10.16265/j.cnki.issn1003-3033.2022.07.1241 |
doi: 10.16265/j.cnki.issn1003-3033.2022.07.1241 |
[1] | ZHOU Yi, PENG Guowen, HUANG Zhao, YANG Pengfei, LIU Dandan, CHEN Xiaoli. Intelligent monitoring and prediction of deformation of uranium tailings dam based on SBAS-InSAR and BPNN [J]. China Safety Science Journal, 2024, 34(4): 145-152. |
[2] | WANG Xin, GAN Zurui, XU Yaxi, SHI Ke, ZHENG Tao. Short text classification of civil aviation intelligent supervision based on character-word fusion [J]. China Safety Science Journal, 2024, 34(2): 37-44. |
[3] | ZHANG Shulin, ZHANG Ya'nan, TIAN Chao, YAN Xiang, LU Yi, SHI Shiliang. Study on flame image recognition of chemical industrial park fires based on convolutional neural network [J]. China Safety Science Journal, 2024, 34(1): 179-186. |
[4] | SHANG Shuhong, CAO Liang, LU Wei. Fault diagnosis algorithm for medium draining screen based on wavelet transform feature extraction [J]. China Safety Science Journal, 2023, 33(S2): 233-237. |
[5] | JING Qinghe, ZHANG Qiliang, WANG Zengren, LIU Dongxing, XIE Miao, MENG Qingshuang. Research on fault detection method for middle section idler of belt conveyor [J]. China Safety Science Journal, 2023, 33(S2): 41-48. |
[6] | ZHANG Bin, ZHANG Xinxin, YANG Haitao. Neural network-based fault diagnosis algorithm for vibration feeder [J]. China Safety Science Journal, 2023, 33(S2): 55-59. |
[7] | RUAN Shunling, HAN Simiao, ZHANG Ningning, GU Qinghua, LU Caiwu. Prediction method of saturation line of tailings dam based on CNN-aGRU fusion model [J]. China Safety Science Journal, 2023, 33(S1): 119-127. |
[8] | ZHANG Qi, JIRGEL. Detection algorithm of slime water overflow based on convolutional neural network [J]. China Safety Science Journal, 2023, 33(S1): 192-195. |
[9] | WANG Yaohan, SONG Zeyang, ZHANG Lidong. Research on safety sign classification based on CNN [J]. China Safety Science Journal, 2023, 33(S1): 263-269. |
[10] | YIN Yibing, ZHANG Yongliang, LIU Zunmin, ZHANG Qiang. Detection method and experiment of small hole leakage based on electrostatic sensing [J]. China Safety Science Journal, 2023, 33(9): 142-149. |
[11] | WU Ankun, WU Shijun, DING Min, ZHANG Chi, ZHANG Shuxia. Prediction of lightning potential based on LSTM recurrent neural network [J]. China Safety Science Journal, 2023, 33(8): 117-124. |
[12] | WANG Wei, LIANG Ran, QI Yun, JIA Baoshan, WU Zewei. Prediction model of coal spontaneous combustion risk based on PSO-BPNN [J]. China Safety Science Journal, 2023, 33(7): 127-132. |
[13] | XIE Luqiang, XU Jing, WANG Haiyan. Risk early warning model of cruise ship construction material logistics collection and distribution based on RS-RBFNN [J]. China Safety Science Journal, 2023, 33(6): 114-121. |
[14] | ZHANG Gan, GUO Shengyu, ZHOU Xiaojie, DONG Yimeng, WU Di, XIAO Tianlong. Research and application of intelligent device for collaborative perception of safety risk in lifting operations [J]. China Safety Science Journal, 2023, 33(6): 122-127. |
[15] | YU Jin, TANG Jianhua, SHEN Xiangkai, LIU Jinhai. Intelligent detection method for submarine pipelines based on Faster R-CNN [J]. China Safety Science Journal, 2023, 33(6): 80-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||