China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (7): 20-27.doi: 10.16265/j.cnki.issn1003-3033.2024.07.0229
• Safety social science and safety management • Previous Articles Next Articles
WU Wei1(), WU Zexuan2, WANG Xinglong1, ZHU Longfei2
Received:
2024-01-19
Revised:
2024-04-20
Online:
2024-07-28
Published:
2025-01-28
CLC Number:
WU Wei, WU Zexuan, WANG Xinglong, ZHU Longfei. Research on DBN incorporating reinforcement learning for runway intrusion risk prediction[J]. China Safety Science Journal, 2024, 34(7): 20-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.07.0229
Table 1
List of causal nodes
符号 | 名称 | 符号 | 名称 | 符号 | 名称 |
---|---|---|---|---|---|
a1 | 人的因素 | a22 | 管制人员培训工作不到位 | b7 | 降水 |
a2 | 场面保障人员和车辆驾驶员差错 | 管制人员工作年限低 | b8 | 沙尘 | |
a3 | 管制人员差错 | a24 | 管制人员工作强度高 | c1 | 设备因素 |
a4 | 飞行人员因素 | a25 | 管制人员人数少 | c2 | 监视设备故障 |
a5 | 场面人员未及时发现危险 | a26 | 复诵错误 | c3 | 通信设备故障 |
a6 | 场面人员未经许可进入跑道 | a27 | 飞行人员对机场不熟悉 | c4 | 地面标志有误 |
a7 | 进入错误跑道 | a28 | 飞行人员未听指令进入跑道 | c5 | 场面灯光中断 |
a8 | 场面人员和车辆驾驶员反应迟钝 | a29 | 飞行人员处置不及时 | c6 | 场面灯光故障 |
a9 | 场面人员和车辆驾驶员业务素质差 | a30 | 飞行人员未及时发现错误 | c7 | 设备可靠性差 |
a10 | 场面人员和车辆驾驶员对机场熟悉程度低 | a31 | 飞行人员陆空通话水平低 | c8 | 通信中断 |
a11 | 场面人员和车辆驾驶员工作经验低 | a32 | 飞行人员反应时间长 | c9 | 标志模糊不清或不合理 |
a12 | 场面人员和车辆驾驶员工作年限 | a33 | 飞行人员业务素质差 | c10 | 设备质量差 |
a13 | 场面人员和车辆驾驶员培训工作不到位 | a34 | 飞行人员工作年限低 | c11 | 检修频率低 |
a14 | 未发现飞行人员复诵错误并纠正 | a35 | 飞行员经验少 | d1 | 监管因素 |
a15 | 未发现飞行人员、车辆等异常并及时处置 | a36 | 飞行人员培训不到位 | d2 | 监管频次低 |
a16 | 管制员未按规定操作 | b1 | 环境因素 | d3 | 规章执行率低 |
a17 | 管制指令不及时 | b2 | 地面湿滑 | d4 | 监控手段不足 |
a18 | 管制人员陆空通话水平低 | b3 | 低能见度 | d5 | 监管人员不足 |
a19 | 管制人员业务素质差 | b4 | 航班流量大 | d6 | 监管投入不足 |
a20 | 管制人员工作经验不足 | b5 | 跑滑布局复杂 | ||
a21 | 管制人员反应时间长 | b6 | 夜间 |
[1] |
United States Department of Transportation of Federal Aviation Aadministration. Runway safety statistics[R], 2022.
|
[2] |
中国民用航空局航空安全办公室. 中国民航航空安全报告[R], 2021.
|
[3] |
|
[4] |
|
[5] |
霍志勤, 韩松臣. 跑道侵入的威胁与差错分析及控制研究[J]. 安全与环境学报, 2012, 12(4):192-196.
|
|
|
[6] |
霍志勤, 韩松臣. 基于案例推理和规则推理融合的跑道侵入事件调查[J]. 中国安全科学学报, 2012, 22(7):53-58.
|
|
|
[7] |
夏正洪, 万健, 朱新平. 机场热点时空分布特征及运行风险评价[J]. 中国安全科学学报, 2018, 28(1):93-98.
doi: 10.16265/j.cnki.issn1003-3033.2018.01.016 |
doi: 10.16265/j.cnki.issn1003-3033.2018.01.016 |
|
[8] |
|
[9] |
王兴隆, 周督异. 基于复杂网络的飞行区冲突关键栅格区识别[J]. 中国安全生产科学技术, 2023, 19(8):32-38.
|
|
|
[10] |
罗军, 林雪宁. 基于模糊集和改进TOPSIS方法的跑道侵入风险评估[J]. 中国安全科学学报, 2012, 22(12):116-121.
|
|
|
[11] |
罗军, 林雪宁, 闫永刚. 基于高斯贝叶斯网络模型的跑道侵入影响因素研究[J]. 安全与环境学报, 2012, 12(3):196-199.
|
|
|
[12] |
黄宝军, 房晓丹, 王洁宁. 基于多agent的跑道侵入风险分析建模及仿真[J]. 系统仿真学报, 2017, 29(4):910-917,925.
doi: 10.16182/j.issn1004731x.joss.201704028 |
doi: 10.16182/j.issn1004731x.joss.201704028 |
|
[13] |
焦卫东, 王瑞冬, 姚军强, 等. 跑道侵入与冲突检测的共形几何代数描述[J]. 航空学报, 2022, 43(5):483-492.
|
|
|
[14] |
王洁宁, 庾睿. 集成本体和BN的跑道侵入态势评估方法[J]. 计算机应用研究, 2019, 36(12):3773-3776.
|
|
|
[15] |
袁乐平, 赵力梵, 张文东, 等. 基于复杂网络的民航跑道侵入事件分析[J]. 安全与环境学报, 2023, 23(5):1368-1375.
|
|
|
[16] |
沈笑云, 张肖艳, 张思远. 基于ADS-B的跑道侵入冲突检测与告警研究[J]. 中国安全科学学报, 2019, 29(9):119-124.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.019 |
doi: 10.16265/j.cnki.issn1003-3033.2019.09.019 |
|
[17] |
吴维, 罗欣然, 魏明. 基于SD模型的跑道侵入风控网络脆弱性分析[J]. 中国安全科学学报, 2021, 31(4):41-48.
doi: 10.16265/j.cnki.issn1003-3033.2021.04.006 |
doi: 10.16265/j.cnki.issn1003-3033.2021.04.006 |
|
[18] |
|
[19] |
乌兰, 刘全, 黄志刚, 等. 优势加权互信息最大化的最大熵分层强化学习[J]. 计算机学报, 2023, 46(10):2066-2083.
|
|
[1] | ZHAO Yaohua, CHEN Yanzhan, ZHENG Liang, LI Shukai. Collision scenario construction and simulation analysis for autonomous driving safety testing [J]. China Safety Science Journal, 2024, 34(7): 211-218. |
[2] | ZHAO Changxiao, LI Daojun, SUN Yixuan, JING Peng, TIAN Yi. Integrated avionics system safety optimization method based on deep reinforcement learning [J]. China Safety Science Journal, 2024, 34(7): 123-131. |
[3] | LI Cong, XU Zixuan, ZHUANG Yufeng, YANG Rui, XU Yabo, CHEN Chen. DBN model of external corrosion accident in gas network system [J]. China Safety Science Journal, 2023, 33(9): 227-236. |
[4] | WEI Ming, SUN Yaru, SUN Bo, WANG Shengjie. UAV distribution route and flight path collaborative planning based on deep reinforcement learning [J]. China Safety Science Journal, 2023, 33(8): 68-76. |
[5] | ZHANG Boxu. Grey correlation analysis of railway accidents [J]. China Safety Science Journal, 2022, 32(S2): 60-63. |
[6] | YUE Wenjing, DU Lijing, CHEN Xianfeng, YUAN Bihe, YANG Jiaqi, WANG Pengcheng. Scenario deduction and node analysis of gas leakage accidents based on DBN [J]. China Safety Science Journal, 2022, 32(S1): 165-170. |
[7] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[8] | ZHOU Xinmin, LUO Wenmin, LIU Junjie, XIE Bao. Information security risk prediction model based on IIWPSO-BP from perspective of alliance chain [J]. China Safety Science Journal, 2022, 32(8): 52-60. |
[9] | XIONG Xiaoxia, LIU Qingchao, SHEN Yujie, CAI Yingfeng, CHEN Long. Study on risk model of highway traffic accidents based on LSTM-BF [J]. China Safety Science Journal, 2022, 32(5): 170-176. |
[10] | JIA Jinzhang, LI Bin, WANG Dongming. Study on influencing factors of cracking radius range caused by liquid CO2 phase transition in coal seams [J]. China Safety Science Journal, 2021, 31(4): 57-63. |
[11] | WU Wei, LUO Xinran, WEI Ming. Vulnerability assessment of runway intrusion risk control network based on SD model [J]. China Safety Science Journal, 2021, 31(4): 41-48. |
[12] | ZHAO Tingsheng, PANG Qizhi, JIANG Wenxi. Safety risk prediction of construction elevator based on database and SVM [J]. China Safety Science Journal, 2021, 31(4): 11-17. |
[13] | GAO Han, DUO Yili, SUN Tie, WANG Zhirong, GUO Pinkun. Dynamic risk analysis of gasifier overtemperature scenario based on DBT-DBN [J]. China Safety Science Journal, 2021, 31(3): 73-81. |
[14] | SHEN Xiaoyun, ZHANG Xiaoyan, ZHANG Siyuan. Research on runway incursion conflict detection and alarm based on ADS-B [J]. China Safety Science Journal, 2019, 29(9): 119-124. |
[15] | WEN Tingxin, LI Yangzi. Risk prediction model of rock burst based on preprocessing for AFOA-ELM [J]. China Safety Science Journal, 2019, 29(8): 29-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||