China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (8): 52-60.doi: 10.16265/j.cnki.issn1003-3033.2022.08.2483
Previous Articles Next Articles
ZHOU Xinmin1,2(), LUO Wenmin3, LIU Junjie3, XIE Bao2
Received:
2022-02-22
Revised:
2022-06-04
Online:
2022-09-05
Published:
2023-02-28
ZHOU Xinmin, LUO Wenmin, LIU Junjie, XIE Bao. Information security risk prediction model based on IIWPSO-BP from perspective of alliance chain[J]. China Safety Science Journal, 2022, 32(8): 52-60.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.08.2483
Tab.1
Comparison of experimental results that meet the error threshold requirements
试验 编号 | 隐藏层神 经元数 | 最大迭 代次数 | 预测值 | MAE | MRE | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 6 | 1 000 | 3.912 2 | 3.817 9 | 2.403 7 | 1.757 3 | 5.110 2 | 0.243 8 | 0.081 9 |
2 | 1 100 | 3.703 9 | 4.604 8 | 1.864 1 | 1.929 8 | 4.594 7 | 0.502 5 | 0.144 | |
3 | 2 000 | 3.372 9 | 4.538 7 | 2.535 5 | 2.303 3 | 5.235 7 | 0.433 9 | 0.129 | |
4 | 2 100 | 3.407 5 | 3.427 2 | 2.171 | 2.129 3 | 5.081 7 | 0.441 1 | 0.129 7 | |
5 | 7 | 800 | 3.804 3 | 3.794 4 | 3.340 6 | 2.030 4 | 4.772 9 | 0.199 9 | 0.054 9 |
6 | 2 600 | 2.806 9 | 3.551 5 | 2.558 2 | 1.819 1 | 5.355 7 | 0.524 0 | 0.143 8 | |
7 | 3 100 | 3.109 3 | 3.480 5 | 2.281 | 1.750 6 | 4.882 8 | 0.499 2 | 0.148 1 | |
8 | 8 | 300 | 3.680 6 | 4.172 1 | 1.993 4 | 2.132 7 | 4.154 1 | 0.495 3 | 0.138 8 |
9 | 1 000 | 3.619 | 3.84 | 2.634 7 | 1.631 3 | 5.077 6 | 0.270 5 | 0.091 4 | |
10 | 1 700 | 3.161 9 | 4.256 9 | 1.951 1 | 2.079 2 | 5.138 8 | 0.472 4 | 0.138 1 | |
11 | 2 000 | 3.851 9 | 3.747 3 | 1.821 3 | 2.296 1 | 5.180 5 | 0.411 2 | 0.135 4 | |
12 | 9 | 200 | 2.634 1 | 3.373 2 | 2.756 3 | 1.96 3 | 5.108 4 | 0.476 4 | 0.123 9 |
13 | 600 | 4.15 | 4.194 2 | 3.233 8 | 2.374 1 | 5.445 8 | 0.279 6 | 0.088 | |
14 | 1 200 | 3.672 1 | 4.047 6 | 2.852 | 1.827 5 | 3.558 8 | 0.427 4 | 0.103 6 | |
15 | 1 600 | 3.783 9 | 3.929 1 | 2.949 6 | 2.036 1 | 6.064 4 | 0.287 6 | 0.063 9 | |
16 | 2 000 | 3.649 2 | 4.022 3 | 1.998 5 | 2.057 5 | 4.485 | 0.389 4 | 0.111 8 | |
17 | 2 700 | 3.119 6 | 4.264 9 | 2.182 7 | 1.819 5 | 4.855 8 | 0.457 5 | 0.135 6 | |
18 | 2 800 | 2.725 1 | 3.862 1 | 3.074 | 1.786 1 | 5.182 2 | 0.376 6 | 0.104 3 | |
19 | 5 000 | 3.308 5 | 4.081 3 | 2.543 4 | 1.822 7 | 4.959 9 | 0.289 4 | 0.088 4 | |
20 | 10 | 200 | 4.266 9 | 4.406 9 | 2.235 2 | 2.311 2 | 4.807 3 | 0.388 5 | 0.123 5 |
21 | 1 200 | 3.95 4 | 4.836 1 | 1.713 9 | 2.003 9 | 5.349 2 | 0.504 3 | 0.144 2 | |
22 | 11 | 600 | 2.161 6 | 4.036 5 | 2.966 2 | 1.965 2 | 6.019 3 | 0.592 6 | 0.140 3 |
23 | 1 100 | 4.116 6 | 3.724 4 | 2.766 1 | 1.98 5 | 4.953 9 | 0.137 4 | 0.038 6 | |
24 | 1 400 | 3.822 6 | 3.393 5 | 2.551 8 | 1.404 6 | 5.117 3 | 0.389 0 | 0.133 3 | |
25 | 12 | 1 000 | 3.646 1 | 4.387 1 | 2.867 8 | 2.670 3 | 5.479 5 | 0.404 6 | 0.132 1 |
26 | 1 200 | 3.523 1 | 4.033 0 | 2.489 9 | 1.683 0 | 5.339 2 | 0.335 2 | 0.104 8 | |
27 | 13 | 100 | 4.370 1 | 4.442 1 | 2.225 5 | 1.547 1 | 4.791 0 | 0.449 7 | 0.145 9 |
28 | 400 | 3.846 5 | 4.269 4 | 2.244 6 | 2.697 8 | 4.960 0 | 0.383 2 | 0.142 9 | |
29 | 500 | 3.503 1 | 4.185 6 | 2.647 | 2.665 8 | 5.303 1 | 0.400 9 | 0.136 4 | |
30 | 1 100 | 3.407 8 | 3.174 5 | 2.784 3 | 1.533 4 | 5.265 3 | 0.473 1 | 0.142 5 | |
31 | 1 400 | 4.006 3 | 3.820 6 | 2.669 | 2.307 5 | 5.237 3 | 0.212 3 | 0.071 6 | |
32 | 2 500 | 3.118 | 4.082 1 | 1.974 8 | 2.045 1 | 5.061 1 | 0.419 1 | 0.123 5 | |
33 | 14 | 100 | 3.862 7 | 5.244 1 | 3.513 7 | 1.989 6 | 6.010 5 | 0.583 2 | 0.114 8 |
34 | 3 000 | 3.81 | 3.861 5 | 2.475 1 | 1.819 8 | 5.735 1 | 0.353 7 | 0.098 8 | |
35 | 15 | 700 | 4.12 | 3.147 5 | 3.356 3 | 1.685 2 | 4.178 3 | 0.493 1 | 0.136 7 |
Tab.2
Robustness comparison
样本数 | IIWPSO-BP预测模型 | PSO-BP预测模型 | BP神经网络预测模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
隐藏层神经元数=11 最大迭代次数=1 100 | 隐藏层神经元数=9 最大迭代次数=1 600 | 隐藏层神经元数=9 最大迭代次数=5 000 | |||||||
预测值 | AE | RE | 预测值 | AE | RE | 预测值 | AE | RE | |
1 | 4.116 6 | 0.116 6 | 0.029 1 | 3.617 9 | 0.382 1 | -0.095 5 | 3.795 5 | 0.204 5 | -0.051 1 |
2 | 3.724 4 | 0.275 6 | -0.068 9 | 3.759 0 | 0.241 0 | -0.060 2 | 4.005 4 | 0.005 4 | 0.001 3 |
3 | 2.766 1 | 0.233 9 | -0.078 0 | 2.770 7 | 0.229 3 | -0.076 4 | 3.000 3 | 0.000 3 | 0.000 1 |
4 | 1.985 0 | 0.015 0 | -0.007 5 | 2.122 9 | 0.122 9 | 0.061 5 | 2.999 8 | 0.999 8 | 0.499 9 |
5 | 4.953 9 | 0.046 1 | -0.009 2 | 5.073 3 | 0.073 3 | 0.014 7 | 5.000 8 | 0.000 8 | 0.000 2 |
Tab.3
Accuracy comparison
隐藏层神经元数=11 最大迭代次数=1 100 IIWPSO-BP预测模型的最佳参数) | |||||||||
---|---|---|---|---|---|---|---|---|---|
样本数 | IIWPSO-BP预测模型 | PSO-BP预测模型 | BP神经网络预测模型 | ||||||
预测值 | AE | RE | 预测值 | AE | RE | 预测值 | AE | RE | |
1 | 4.116 6 | 0.116 6 | 0.029 1 | 4.005 3 | 0.005 3 | 0.001 3 | 3.137 4 | 0.862 6 | -0.215 6 |
2 | 3.724 4 | 0.275 6 | -0.068 9 | 3.146 1 | 0.853 9 | -0.213 5 | 3.601 4 | 0.398 6 | -0.099 6 |
3 | 2.766 1 | 0.233 9 | -0.078 0 | 2.859 0 | 0.141 0 | -0.047 0 | 3.025 2 | 0.025 2 | 0.008 4 |
4 | 1.985 0 | 0.015 0 | -0.007 5 | 1.643 2 | 0.356 8 | -0.178 4 | 2.991 9 | 0.991 9 | 0.496 0 |
5 | 4.953 9 | 0.046 1 | -0.009 2 | 4.538 5 | 0.461 5 | -0.092 3 | 4.765 3 | 0.234 7 | -0.046 9 |
隐藏层神经元数=9 最大迭代次数=1600 (PSO-BP预测模型的最佳参数) | |||||||||
样本数 | IIWPSO-BP预测模型 | PSO-BP预测模型 | BP神经网络预测模型 | ||||||
预测值 | AE | RE | 预测值 | AE | RE | 预测值 | AE | RE | |
1 | 3.783 9 | 0.216 1 | -0.054 | 3.617 9 | 0.382 1 | -0.095 5 | 3.317 9 | 0.682 1 | -0.170 5 |
2 | 3.929 1 | 0.070 9 | -0.017 7 | 3.759 | 0.241 | -0.060 2 | 3.525 3 | 0.474 7 | -0.118 7 |
3 | 2.949 6 | 0.050 4 | -0.016 8 | 2.770 7 | 0.229 3 | -0.076 4 | 3.223 2 | 0.223 2 | 0.074 4 |
4 | 2.036 1 | 0.036 1 | 0.018 1 | 2.122 9 | 0.122 9 | 0.061 5 | 3.232 0 | 1.232 0 | 0.616 0 |
5 | 6.064 4 | 1.064 4 | 0.212 9 | 5.073 3 | 0.073 3 | 0.014 7 | 4.517 8 | 0.482 2 | -0.096 4 |
隐藏层神经元数=9 最大迭代次数=5000 (BP神经网络预测模型的最佳参数) | |||||||||
样本数 | IIWPSO-BP预测模型 | PSO-BP预测模型 | BP神经网络预测模型 | ||||||
预测值 | AE | RE | 预测值 | AE | RE | 预测值 | AE | RE | |
1 | 3.308 5 | 0.691 5 | -0.172 9 | 2.961 7 | 1.038 3 | -0.259 6 | 3.795 5 | 0.204 5 | -0.051 1 |
2 | 4.081 3 | 0.081 3 | 0.020 3 | 3.854 3 | 0.145 7 | -0.036 4 | 4.005 4 | 0.005 4 | 0.001 3 |
3 | 2.543 4 | 0.456 6 | -0.152 2 | 2.667 9 | 0.332 1 | -0.110 7 | 3.000 3 | 0.000 3 | 0.000 1 |
4 | 1.822 7 | 0.177 3 | -0.088 6 | 1.950 7 | 0.049 3 | -0.024 7 | 2.999 8 | 0.999 8 | 0.499 9 |
5 | 4.959 9 | 0.040 1 | -0.008 0 | 4.793 8 | 0.206 2 | -0.041 2 | 5.000 8 | 0.000 8 | 0.000 2 |
[1] |
石娟, 郑鹏, 常丁懿. 大数据环境下的城市公共安全治理:区块链技术赋能[J]. 中国安全科学学报, 2021, 31(2):24-32.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.004 |
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.004 |
|
[2] |
曹策俊, 李从东, 王玉, 等. 大数据时代城市公共安全风险演化与治理机制[J]. 中国安全科学学报, 2017, 27(7): 151-156.
doi: 10.16265/j.cnki.issn1003-3033.2017.07.027 |
doi: 10.16265/j.cnki.issn1003-3033.2017.07.027 |
|
[3] |
翟伟, 盛智平, 果希光, 等. 雄安新区工程监理区块链管理模式研究与应用[J]. 中国安全科学学报, 2021, 31(4):27-33.
doi: 10.16265/j.cnki.issn1003-3033.2021.04.004 |
doi: 10.16265/j.cnki.issn1003-3033.2021.04.004 |
|
[4] |
郭祖华, 李扬波, 徐立新, 等. 面向云计算的网络安全风险预测模型的研究[J]. 计算机应用研究, 2015, 32(11):3421-3425.
|
|
|
[5] |
向尚, 邹凯, 蒋知义, 等. 基于随机森林的智慧城市信息安全风险预测[J]. 中国管理科学, 2016, 24(增1):266-270.
|
|
|
[6] |
张艳丰, 王羽西, 邹凯, 等. 基于模糊DANP的智慧城市信息安全风险要素识别与管理策略研究[J]. 情报理论与实践, 2020, 43(10):144-150.
|
|
|
[7] |
|
[8] |
邹凯, 向尚, 张中青扬, 等. 智慧城市信息安全风险评估模型构建与实证研究[J]. 图书情报工作, 2016, 60(7):19-24.
doi: 10.13266/j.issn.0252-3116.2016.07.003 |
|
|
[9] |
毛子骏, 梅宏, 肖一鸣, 等. 基于贝叶斯网络的智慧城市信息安全风险评估研究[J]. 现代情报, 2020, 40(5):19-26,40.
|
|
|
[10] |
腾讯电脑管家. 2018上半年区块链安全报告[EB/OL]. [2020-05-23].
|
[11] |
中国互联网金融协会区块链研究工作组. 中国区块链金融应用与发展研究报告[EB/OL]. [2020-04-14].
|
[1] | ZHONG Wei, YU Jiayi. Real-time fire evacuation system under smart city background [J]. China Safety Science Journal, 2023, 33(2): 179-184. |
[2] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[3] | XIONG Xiaoxia, LIU Qingchao, SHEN Yujie, CAI Yingfeng, CHEN Long. Study on risk model of highway traffic accidents based on LSTM-BF [J]. China Safety Science Journal, 2022, 32(5): 170-176. |
[4] | HE Yongbo, CAO Zhubing. Pressure compensation algorithm of fire gas sensors based on IPSO-BP model [J]. China Safety Science Journal, 2022, 32(2): 107-114. |
[5] | SHI Juan, CHANG Dingyi, ZHENG Peng. An early warning model of unsafe behaviors of construction workers based on BP neural network [J]. China Safety Science Journal, 2022, 32(1): 27-33. |
[6] | ZHAO Tingsheng, PANG Qizhi, JIANG Wenxi. Safety risk prediction of construction elevator based on database and SVM [J]. China Safety Science Journal, 2021, 31(4): 11-17. |
[7] | LI Tingting, LU Cheng. Railway industry statistical survey system based on safety protection [J]. China Safety Science Journal, 2020, 30(S1): 133-138. |
[8] | SONG Gaofeng, ZHANG Yanbing, SUN Peipei, SHEN Shuoxun, WANG Zhirong. Safety evaluation method based on acoustic emission technology for large-scale storage tanks [J]. China Safety Science Journal, 2020, 30(3): 60-66. |
[9] | LI Xiang, BU Bing, ZHU Li. Research on proactive defensemethodin train control systemfor urban rail transit [J]. China Safety Science Journal, 2019, 29(S2): 62-68. |
[10] | XIONG Wenze, JIN Jianghong, TANG Junmei. Quantitative risk assessment method for information security of SCADA systems [J]. China Safety Science Journal, 2019, 29(8): 157-163. |
[11] | HAO Yongmei, DU Zhanghao, YANG Wenbin, XING Zhixiang, JIANG Juncheng, YUE Yunfei. Pipeline leakage signal identification based on improved ELMD and multi-scale entropy [J]. China Safety Science Journal, 2019, 29(8): 105-111. |
[12] | WEN Tingxin, LI Yangzi. Risk prediction model of rock burst based on preprocessing for AFOA-ELM [J]. China Safety Science Journal, 2019, 29(8): 29-34. |
[13] | SONG Bo. Safety evaluation for deep foundation pit construction in metro station based on DEA-BP neural network [J]. China Safety Science Journal, 2019, 29(5): 91-96. |
[14] | FENG Zijian. Research on railway freight safety risk assessment based on BP neural network [J]. China Safety Science Journal, 2018, 28(S1): 178-185. |
[15] | WEN Tingxin, YU Feng. NRS-ACPSO-SVM based model for prediction of rock burst risk [J]. China Safety Science Journal, 2017, 27(10): 19-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||