China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (8): 45-51.doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
Previous Articles Next Articles
WU Xianguo1(), FENG Zongbao1, LIU Jun1, WANG Lei1,**(
), CHEN Hongyu2, LI Xinyi1
Received:
2022-02-12
Revised:
2022-05-15
Online:
2022-09-05
Published:
2023-02-28
Contact:
WANG Lei
WU Xianguo, FENG Zongbao, LIU Jun, WANG Lei, CHEN Hongyu, LI Xinyi. Multi-objective optimization of surface settlement safety control during shield construction based on RF-NSGA-II[J]. China Safety Science Journal, 2022, 32(8): 45-51.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.08.2702
Tab.1
Detailed information of shield construction data
参数 类型 | 变量 | 数据(221组) | |
---|---|---|---|
最小值 | 最大值 | ||
土压力X1/ MPa | 0.05 | 0.18 | |
刀盘转速X2/(rad·min-1) | 1.3 | 2.3 | |
总推力X3/kN | 8 000 | 15 000 | |
刀盘扭矩X4/(kN·m) | 1 208 | 3 050 | |
掘进速度X5/ (mm·min-1) | 12.96 | 28.17 | |
注浆压力X6/MPa | 0.093 | 0.286 | |
注浆量X7/ m3 | 4.4 | 11.8 | |
渣土量X8/ m3 | 38 | 80 | |
泡沫剂X9/ L | 22.22 | 44.44 | |
输出 | 地表沉降f1/ mm | 0.22 | 8.55 |
Tab.3
Comparison of optimal solution data range and actual data of multi-objective optimization results
变量 | 优化结果 | 盾构施工实际数据 | 控制范围 | ||||
---|---|---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | ||
X1/MPa | 0.06 | 0.11 | 0.08 | 0.05 | 0.18 | 0.13 | 0.06~0.11 |
X2/(rad·min-1) | 1.3 | 1.3 | 1.3 | 1.3 | 2.3 | 1.6 | 1.3 |
X3/kN | 8 616 | 13 949 | 10 791 | 8 000 | 15 000 | 11 929 | 8 600~14 000 |
X4/(kN·m) | 1 904 | 3 001 | 2 786 | 1 208 | 3 050 | 2 000 | 1 900~3 000 |
X5/(mm·min-1) | 13.6 | 27.8 | 22.1 | 13.0 | 28.2 | 22.7 | 14~28 |
X6/MPa | 0.13 | 0.28 | 0.18 | 0.09 | 0.29 | 0.21 | 0.1~0.3 |
X7/m3 | 4.4 | 5.2 | 4.9 | 4.4 | 11.8 | 5.6 | 4~5 |
X8/m3 | 39 | 75 | 50 | 39 | 80 | 51 | 39~75 |
X9/L | 33.4 | 40.0 | 35.5 | 22.2 | 44.4 | 35.2 | 33~40 |
f1/mm | 0.45 | 3.27 | 2.23 | 0.22 | 8.55 | 2.87 | — |
f2/mm | 0.13 | 0.13 | 0.13 | 0.13 | 0.23 | 0.17 | — |
[1] |
王军武, 胡蝶, 吴寒, 等. 小直径深层排水隧道盾构施工安全风险评价[J]. 中国安全科学学报, 2020, 30(6): 113-120.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.017 |
doi: 10.16265/j.cnki.issn1003-3033.2020.06.017 |
|
[2] |
冯欢欢, 王树英, 杨露伟, 等. 复杂地质条件下TBM刀具失效形式及原因分析与应对措施[J]. 隧道建设:中英文, 2022, 42(1):130-136.
|
|
|
[3] |
|
[4] |
doi: 10.1007/s11709-019-0561-3 |
[5] |
王鹏. 基于机器学习的地铁隧道施工扰动控制研究[J]. 现代隧道技术, 2019, 56(增2): 368-373.
|
|
|
[6] |
石超, 薛皓文, 丁小彬. 基于BP神经网络的硬岩地层盾构滚刀磨损预测[J]. 现代隧道技术, 2020, 57(增1): 217-225.
|
|
|
[7] |
doi: 10.1007/s00603-018-1549-3 |
[8] |
陈焱, 王宇皓, 方勇, 等. 砂性地层土压平衡盾构切刀磨损室内试验研究[J]. 现代隧道技术, 2021, 58(5): 159-166.
|
|
|
[9] |
曾铁梅, 王金峰, 吴贤国, 等. 盾构下穿既有隧道位移控制施工参数多目标优化[J]. 铁道标准设计, 2022, 66(2):98-104.
|
|
|
[10] |
doi: 10.1023/A:1010933404324 |
[11] |
张新生, 蔡宝泉. 基于改进随机森林模型的海底管道腐蚀预测[J]. 中国安全科学学报, 2021, 31(8): 69-74.
doi: 10.16265/j.cnki.issn1003-3033.2021.08.010 |
doi: 10.16265/j.cnki.issn1003-3033.2021.08.010 |
|
[12] |
|
[13] |
|
[14] |
doi: 10.1016/j.isatra.2019.04.007 |
[15] |
doi: 10.1016/j.tust.2017.03.011 |
[16] |
邓立营, 刘春光, 党军锋. 盾构机刀盘扭矩及盾体推力计算方法研究[J]. 矿山机械, 2010, 38(17): 13-16.
|
|
|
[17] |
|
[18] |
吕乾乾. 地铁盾构隧道同步注浆施工对地层沉降影响的预测分析[D]. 天津: 天津大学, 2012.
|
|
|
[19] |
陶冶. 基于SVM的盾构刀盘能耗预测分析[D]. 武汉: 华中科技大学, 2017.
|
|
|
[20] |
张垚. 土压平衡盾构机掘进系统能耗优化控制[D]. 抚顺: 辽宁石油化工大学, 2019.
|
|
|
[21] |
|
[1] | WANG Junwu, HE Juanjuan, SONG Yinghui, LIU Yipeng, CHEN Zhao, GUO Jingyi. Research on early warning for prefabricated building workers' unsafe behaviors of working at height based on RF-SFLA-SVM [J]. China Safety Science Journal, 2024, 34(3): 1-8. |
[2] | MA Tianming, HUANG Chuyuan, CHEN Xianfeng. Heterogeneous vehicle routing problem of hazardous materials transportation considering carbon emissions [J]. China Safety Science Journal, 2024, 34(1): 193-199. |
[3] | WANG Wei, CUI Xinchao, QI Yun, LIANG Ran, JIA Baoshan, XUE Kailong. Regression analysis model of coal spontaneous combustion temperature in goaf based on SSA-RF [J]. China Safety Science Journal, 2023, 33(9): 136-141. |
[4] | CHAI Huo, HE Ruichun, JIA Xiaoyan, DAI Cunjie. Vehicle scheduling for hazardous materials transportation based on dissimilar paths [J]. China Safety Science Journal, 2023, 33(9): 181-188. |
[5] | WU Fanghao, CHEN Wei, SUN Huizhong, NIU Li, FU Jianhua. Safety-civilized measure cost prediction precision study on construction project [J]. China Safety Science Journal, 2023, 33(8): 51-58. |
[6] | ZHANG Yanping, CUI Na, ZHANG Bo. Multi-objective optimization strategy of emergency material supply based on multi-mode transportation [J]. China Safety Science Journal, 2023, 33(7): 230-238. |
[7] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[8] | WANG Hui, ZHOU Guoqiang, WANG Yujian, YUE Xingqi, ZHANG Yiming. Structural parameter analysis and optimization of pneumatic safety valve in aviation propulsion system [J]. China Safety Science Journal, 2023, 33(2): 48-58. |
[9] | ZHANG Minbo, ZHONG Ziyi, YAN Jin, WANG Cuiling, WANG Zichao, LI Chunxin. Model of emergency supplies allocation in epidemic areas considering spread of biohazard diffusion [J]. China Safety Science Journal, 2023, 33(11): 206-213. |
[10] | YANG Wenchen, ZHOU Yanning, TIAN Bijiang, GUO Fengxiang, HU Chengyu. Traffic accident severity prediction for secondary highways based on cluster analysis and SVM model [J]. China Safety Science Journal, 2022, 32(5): 163-169. |
[11] | HONG Liang, LIU Gang, GE Ruhai, LI Liang, LI Siyuan. Multi-objective optimization of normally-open airbag of school buses under mixed conditions [J]. China Safety Science Journal, 2022, 32(4): 72-79. |
[12] | DING Xi, ZHAO Xiaodong, WU Xinjun, ZHANG Taili, XU Zhentao. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel [J]. China Safety Science Journal, 2022, 32(3): 194-200. |
[13] | ZHANG Lidong, SONG Zeyang, LUO Zhenmin, ZHAO Shanshan. Prediction of coal spontaneous combustion period based on machine learning [J]. China Safety Science Journal, 2022, 32(12): 118-124. |
[14] | JI Xiaofeng, YANG Chunli, HAO Jingjing, QIN Wenwen. Research prospects and hotspot comparison for emergency logistics in China and foreign countries [J]. China Safety Science Journal, 2021, 31(12): 144-152. |
[15] | WU Renbiao, HE Yuxiang, JIA Yunfei. Key personnel risk assessment method based on improved AHP [J]. China Safety Science Journal, 2021, 31(10): 112-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||