[1] |
欧阳明高. 欧阳明高:新能源革命的高潮正在到来[J]. 中国电力企业管理, 2021(16):11-14.
|
[2] |
孙强, 贾井运, 王海斌, 等. 常压及低压下锂电池热失控随数量变化特性[J]. 中国安全科学学报, 2022, 32(2):145-151.
doi: 10.16265/j.cnki.issn1003-3033.2022.02.020
|
|
SUN Qiang, JIA Jingyun, WANG Haibin, et al. Research on thermal runaway characteristics of lithium-ion batteries along with cell number changes under standard and low atmospheric pressures[J]. China Safety Science Journal, 2022, 32(2):145-151.
doi: 10.16265/j.cnki.issn1003-3033.2022.02.020
|
[3] |
张青松, 郭超超, 秦帅星. 锂离子电池燃爆特征及空运安全性研究[J]. 中国安全科学学报, 2016, 26(2):50-55.
|
|
ZHANG Qingsong, GUO Chaochao, QIN Shuaixing. Study on lithium-ion batteries explosive characteristics and aviation transportation safety[J]. China Safety Science Journal, 2016, 26(2):50-55.
|
[4] |
JIN Yang, ZHAO Zhixing, MIAO Shan, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42:DOI: 10.1016/j.est.2021.102987.
doi: 10.1016/j.est.2021.102987
|
[5] |
FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018, 10:246-267.
doi: 10.1016/j.ensm.2017.05.013
|
[6] |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. Rsc Advances, 2014, 4:3633-3642.
doi: 10.1039/C3RA45748F
|
[7] |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1):81-100.
doi: 10.1016/S0378-7753(02)00488-3
|
[8] |
刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11):120-126.
doi: 10.16265/j.cnki.issn 1003-3033.2021.11.017
|
|
LIU Tongyu, LI Shi, FU Weidong, et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal, 2021, 31(11):120-126.
doi: 10.16265/j.cnki.issn 1003-3033.2021.11.017
|
[9] |
王淮斌, 李阳, 王钦正, 等. 三元锂离子动力电池热失控及蔓延特性实验研究[J]. 工程科学学报, 2021, 43(5):663-675.
|
|
WANG Huaibin, LI Yang, WANG Qinzheng, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5):663-675.
|
[10] |
DOUGHTY D H, BUTLER P C, JUNGST R G, et al. Lithium battery thermal models[J]. Journal of Power Sources, 2002, 110(2):357-363.
doi: 10.1016/S0378-7753(02)00198-2
|
[11] |
RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources, 1999, 79(2):135-142.
doi: 10.1016/S0378-7753(99)00055-5
|
[12] |
WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
doi: 10.1016/j.jpowsour.2012.02.038
|
[13] |
GUO Guifang, LONG Bo, CHENG Bo, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8):2393-2398.
doi: 10.1016/j.jpowsour.2009.10.090
|
[14] |
VERBRUGGE M W. Three-dimensionai temperature and current distribution in a battery module[J]. Aiche Journal, 2010, 41(6):1550-1562.
doi: 10.1002/(ISSN)1547-5905
|
[15] |
DRAKE S J, MARTIN M, WETZ D A, et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285:266-273.
doi: 10.1016/j.jpowsour.2015.03.008
|
[16] |
LYON R E, WALTERS R N. Energetics of lithium ion battery failure[J]. Journal of Hazardous Materials, 2016, 318(15):164-172.
doi: 10.1016/j.jhazmat.2016.06.047
|
[17] |
吴唐琴. 锂离子电池产热和热诱导失控特性实验研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
WU Tangqin. Experimental study on heat generation and thermal induced runaway of lithium-ion battery[D]. Hefei: University of Science and Technology of China, 2018.
|
[18] |
FENG Xuning, FANG Mou, HE Xiangming, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255:294-301.
doi: 10.1016/j.jpowsour.2014.01.005
|
[19] |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
[20] |
HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7):755-761.
|
[21] |
FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968.
doi: 10.1016/j.jpowsour.2009.10.105
|
[22] |
FU Yangyang, SONG Lu, LONG Shi, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy, 2018, 161:38-45.
doi: 10.1016/j.energy.2018.06.129
|
[23] |
赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
ZHAO Chunpeng. Study on the risk of thermal runaway deflagration of ternary lithium-ion batteries in confined space[D]. Hefei: University of Science and Technology of China, 2021.
|
[24] |
KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2):476-489.
doi: 10.1016/j.jpowsour.2007.04.018
|
[25] |
LIU Xiang, REN Dongsheng, HSU Hungjen, et al. Thermal runaway of lithium-Ion batteries without internal short circuit[J]. Joule, 2018, 2(10):2047-2064.
doi: 10.1016/j.joule.2018.06.015
|
[26] |
MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2):568-574.
doi: 10.1016/j.jpowsour.2009.02.070
|
[27] |
TORABI F, ESFAHANIAN V. Study of thermal-runaway in batteries I. theoretical study and formulation[J]. Journal of the Electrochemical Society, 2011, 158(8):850-858.
|
[28] |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1):111-124.
doi: 10.1016/j.jpowsour.2004.05.064
|
[29] |
LIU Yanhui, NIU Huichang, LI Zhao, et al. Thermal runaway characteristics and failure criticality of massive ternary Li-ion battery piles in low-pressure storage and transport[J]. Process Safety and Environmental Protection, 2021, 155:486-497.
doi: 10.1016/j.psep.2021.09.031
|
[30] |
陈长坤, 路长, 姚斌, 等. 燃烧学[M]. 北京: 机械工业出版社, 2012:43.
|
[31] |
程昀, 李劼, 贾明, 等. 动力锂离子电池模块散热结构仿真研究[J]. 中国有色金属学报, 2015, 25(6): 1607-1616.
|
|
CHENG Yun, LI Jie, JIA Ming, et al. Simulation research of heat dissipation structure for automotive lithium-ion battery packs[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1607-1616.
|