中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (6): 49-55.doi: 10.16265/j.cnki.issn1003-3033.2023.06.1941

• 安全工程技术 • 上一篇    下一篇

辐射对流散热下大尺寸三元锂电池热模型

贺元骅(), 赵逸明, 张俐恒, 王之媛, 黄江**()   

  1. 中国民用航空飞行学院 民机火灾科学与安全工程四川省重点实验室,四川 广汉 618307
  • 收稿日期:2023-01-14 修回日期:2023-04-08 出版日期:2023-08-07
  • 通讯作者:
    **黄江(1993—),男,重庆人,博士,讲师,主要从事多相流传热传质等方面的研究。E-mail:
  • 作者简介:

    贺元骅 (1965—),男,四川德阳人,硕士,教授,主要从事飞机防火、机场救援、锂电动力等方面的工作。E-mail:

  • 基金资助:
    国家自然科学基金资助(U2033206); 四川省科技计划项目(2021YFSY0001)

Research on thermal model of large format ternary lithium battery under radiation convection heat dissipation

HE Yuanhua(), ZHAO Yiming, ZHANG Liheng, WANG Zhiyuan, HUANG Jiang**()   

  1. Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan Sichuan 618307,China
  • Received:2023-01-14 Revised:2023-04-08 Published:2023-08-07

摘要:

为精准界定热失控发展过程中锂电池热聚集特征,采用理论和试验相结合的方法,研究热滥用引发的大尺寸三元锂电池热模型。首先,依据能量守恒定律,明确电池热模型中的加热片产热量Qe、化学反应产热量Qf、电能释放产热量Qj和环境散热量Qd这4个热量参数,进而基于物理热量计算公式(Q = CMΔθ)和集总参数法,构建大尺寸三元锂电池由热滥用引发的热模型;其次,对模型参数获取进行理论分析,研究4个热量参数对电池热累积变化的重要度;最后,结合试验数据,将研究区间以点(ti,θi)进行分区,确定表面传热系数h的值,进一步验证辐射对流散热下热失控锂电池热模型。结果表明:总产热量Qw为 12.88×105 J,总散热量Qd为 6.60×105 J,其中,辐射散热量为2.91×105 J,对流散热量为3.69×105 J,利用热模型计算出的热量理论预测热失控峰值温度θp,与试验结果契合度较好,明确锂电池热失控发展过程中的热量聚集特征。

关键词: 辐射对流, 散热量, 大尺寸三元锂电池, 热模型, 热滥用

Abstract:

In order to accurately define the characteristics of battery thermal accumulation during the development of thermal runaway, a combination method of theory and experiment was used to study the thermal model of large format ternary lithium batteries caused by thermal abuse. Firstly, according to the law of conservation of energy, the four heat parameters of the battery thermal model, heat production from heater (Qe), heat production from chemical reaction (Qf), heat production from electrical energy release (Qj) and ambient heat dissipation (Qd), were clarified. Then, based on the physical heat calculation formula (Q = CMΔθ) and the lumped parameter method, the thermal model for heat abuse of large format ternary lithium batteries was constructed. Secondly, the theoretical analysis of the model parameters was carried out, and the importance of the four thermal parameters on the thermal cumulative change of the battery was investigated. Finally, combined with the experimental data, the value of the surface heat transfer coefficient h was determined by dividing the study scope into points (ti, θi), and the thermal model of the thermal runaway lithium battery in the heat dissipation environment was further verified. The calculation results show that the heat production (Qw) = 12.88×105 J, the heat dissipation (Qd) = 6.60×105 J, of which the radiation heat dissipation is 2.91×105 J, and the convection heat dissipation is 3.69×105 J. The thermal runaway peak temperature θp is theoretically predicted by the heat calculated by the thermal model, which is highly consistent with the experimental results. The research work can provide guidance for the prevention of thermal disasters caused by the thermal runaway of lithium batteries.

Key words: radiation convection, heat dissipation, thermal model, thermal abuse, thermal runaway