中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (12): 129-138.doi: 10.16265/j.cnki.issn1003-3033.2025.12.0198

• 安全工程技术 • 上一篇    下一篇

多算法融合因子筛选的LSTM模型在大坝变形预测中的应用

尹孝君1(), 丁勇1,**(), 李登华2,3   

  1. 1 南京理工大学 安全科学与工程学院, 江苏 南京 210094
    2 南京水利科学研究院, 江苏 南京 210029
    3 水利部水库大坝安全重点实验室, 江苏 南京 210024
  • 收稿日期:2025-06-20 修回日期:2025-09-18 出版日期:2025-12-27
  • 通信作者:
    ** 丁勇(1977—),男,江苏南京人,博士,副教授,主要从事结构健康检测、智能检测的研究。E-mail:
  • 作者简介:

    尹孝君 (2001—),男,山东青岛人,硕士研究生,研究方向为大坝结构健康监测。E-mail:

    李登华 高级工程师

  • 基金资助:
    国家重点研发计划资助项目(2024YFC3210703); 国家自然科学基金资助(U2240221); 中央级公益性科研院所基本科研业务费专项资金资助项目(Yk325002); 中央级公益性科研院所基本科研业务费专项资金资助项目(Y724011)

Application of LSTM model with multi-algorithm fusion factor screening in dam deformation prediction

YIN Xiaojun1(), DING Yong1,**(), LI Denghua2,3   

  1. 1 School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2 Nanjing Hydraulic Research Institute, Nanjing 210029, China
    3 Key Laboratory of Reservoir Dam Safety, Nanjing 210024, China
  • Received:2025-06-20 Revised:2025-09-18 Published:2025-12-27

摘要:

针对传统大坝变形预测中影响因子选择方法单一、难以全面捕捉高维数据复杂因子关联性的问题,提出一种基于多算法融合的因子筛选方法,并应用于构建最优因子的长短期记忆(LSTM)网络模型。使用相关系数法、邻域成分分析(NCA)算法、最小绝对值收缩和选择算子法(LASSO)分别筛选影响因子,并合并筛选结果;由于因子间会存在相关性,再根据对称不确定性(SU)剔除高度相关的因子,实现因子优选,利用 LSTM 网络建立大坝变形预测模型;以新疆某混凝土面板堆石坝为例,以均方根误差(RMSE)、平均绝对误差(MAE)、均方误差(MSE)及决定系数(R2)作为评价指标评估模型性能。结果表明:相较于传统因子筛选方法,本文方法融合多种算法优势,能够全面、准确地筛选出对大坝变形影响显著的因子,其中MSE较其他方法降低20.11%~59.09%,RMSE降低10.61%~36.05%,MAE降低9.95%~37.86%,构建出更优的预测模型;部分测点的MSE、RMSE和MAE较其他对比模型最大降幅分别达53.5%、31.9%和34.7%,且决定系数最高达0.986 0。

关键词: 多算法融合, 因子筛选, 最优因子长短期记忆网络模型(LSTM), 大坝变形, 预测模型

Abstract:

To address the reliance on a single factor selection approach in traditional dam deformation prediction and the difficulty of comprehensively capturing complex inter-factor relationships among high-dimensional influencing factors, a factor screening method based on the fusion of multiple algorithms was proposed and applied to construct an LSTM model using optimally factors. Specifically, influencing factors were selected separately using the correlation coefficient method, neighborhood component analysis (NCA), and least absolute shrinkage and selection operator (LASSO) technique. The results from these individual methods were subsequently integrated. Since correlations exist among the factors, highly correlated ones were further eliminated using symmetrical uncertainty (SU), thereby an optimized factors set was obtained. The selected factor set was then used to develop a dam deformation prediction model via an LSTM network. A concrete-faced rockfill dam in Xinjiang was used as the case study. The model performance was evaluated using root mean square error (RMSE), mean absolute error (MAE), mean square error (MSE), and the coefficient of determination (R2). The results demonstrate that, compared with traditional factor selection methods, the proposed multi-algorithms are integrated and factors with significant influence on dam deformation are comprehensively and accurately identified. MSE is reduced by 20.11%-59.09%, RMSE by 10.61%-36.05%, and MAE by 9.95%-37.86%, and a superior predictive model was obtained, compared with models using conventional factor selection methods. For specific monitoring points, the maximum reductions in MSE, RMSE, and MAE reach 53.5%, 31.9%, and 34.7%, respectively, while the highest R2 value attains 0.986 0.

Key words: multi-algorithm fusion, feature selection, long short-term memory(LSTM), dam deformation, prediction model

中图分类号: