中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 64-70.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0011

• 安全工程技术 • 上一篇    下一篇

基于IWOA-LightGBM的煤自燃程度预测方法研究

臧燕杰()   

  1. 国家能源集团 沙吉海煤矿, 新疆 和布克赛尔 834411
  • 收稿日期:2025-02-14 修回日期:2025-04-08 出版日期:2025-09-02
  • 作者简介:

    臧燕杰 (1977— ),男,山东菏泽人,高级工程师,主要从事于矿井“一通三防”采掘管理、矿山救护等方面的工作。

Research on prediction method of coal spontaneous combustion degree based on IWOA-LightGBM

ZANG Yanjie()   

  1. Shajihai Coal Mine, CHN Energy, Hebukesai'er Xinjiang 834411, China
  • Received:2025-02-14 Revised:2025-04-08 Published:2025-09-02

摘要: 为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过 SPSS 27 分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(WOA)易陷入局部最优的问题,引入 Circle 混沌映射、自适应权重及最优领域扰动策略改进其全局搜索能力,进而优化 LightGBM 超参数以提升预测精度并抑制过拟合;最后,将该模型应用于新疆沙吉海煤矿实际预测场景。结果表明:IWOA- LightGBM模型相较于其他模型,在测试样本中的准确率A分别提高13.33%、26.66%、20%、20%、13.33%;精确率P分别提高12.23%、24.45%、18.89%、18.89%、12.23%;召回率R分别提高13.1%、23.02%、18.1%、16.07%、10.56%;F1分别提高12.56%、23.79%、18.52%、17.58%、13.15%。模型在复杂条件下的可靠性与稳定性,展现出优于传统模型的泛化性与鲁棒性,能够为矿井煤自燃灾害预警提供了新的技术方案。

关键词: 煤自燃, 改进鲸鱼优化算法(IWOA), 轻量级梯度提升机(LightGBM), 核主成分分析法(KPCA), 预测模型

Abstract:

To improve the accuracy of coal spontaneous combustion prediction, a prediction model fusing IWOA and LightGBM was proposed. Firstly, the correlation between the concentration of indicator gases in the coal spontaneous combustion program heating test was analyzed using SPSS 27, and KPCA was used to extract principal component data. Then, in response to the problem of traditional whale optimization algorithm (WOA) easily falling into local optima, Circle chaotic mapping, adaptive weights, and optimal domain perturbation strategy were introduced to improve its global search ability, and LightGBM hyperparameters were optimized to enhance prediction accuracy and suppress overfitting. Finally, the model was applied to the actual prediction scenario of Shajihai coal mine in Xinjiang. The results show that the IWOA-LightGBM model improves Ac in the test samples by 13.33%, 26.66%, 20%, 20%, and 13.33% compared to other models; Pr increases by 12.23%, 24.45%, 18.89%, 18.89%, and 12.23% respectively; Re values increase by 13.1%, 23.02%, 18.1%, 16.07%, and 10.56%, respectively; F1 improves by 12.56%, 23.79%, 18.52%, 17.58%, and 13.15%, respectively. On-site verification has shown the reliability and stability of the model under complex conditions, demonstrating better generalization and robustness than traditional models and providing a new technical solution for early warning of coal spontaneous combustion disasters in mines.

Key words: coal spontaneous combustion, improved whale optimization algorithm (IWOA), lightweight gradient boosting machine (LightGBM), kernel principal component analysis (KPCA), prediction model

中图分类号: