中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 217-226.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0033

• 研究论文 • 上一篇    下一篇

考虑联邦学习分类极不平衡的窃电检测研究

张政越1(), 曹建涛2, 祁云3   

  1. 1 内蒙古工业大学 电力学院, 内蒙古 呼和浩特 010051
    2 西安科技大学 能源与矿业工程学院, 陕西 西安 710054
    3 内蒙古科技大学 矿业与煤炭学院, 内蒙古 包头 014010
  • 收稿日期:2025-01-18 修回日期:2025-03-21 出版日期:2025-09-03
  • 作者简介:

    张政越 (2003—),男,内蒙古鄂尔多斯人,本科,研究方向为智能电力设计与规划。E-mail:

    曹建涛, 副教授

    祁云, 副教授

  • 基金资助:
    基金资助:国家自然科学基金资助(62241309); 内蒙古自然科学基金资助(2022MS06018)

Study on electricity theft detection considering extremely imbalanced classification in federated learning

ZHANG Zhengyue1(), CAO Jiantao2, QI Yun3   

  1. 1 Electric Power College, Inner Mongolia University of Technology, Hohhot Inner Mongolia 010051, China
    2 College of Energy and Mining Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China
    3 School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
  • Received:2025-01-18 Revised:2025-03-21 Published:2025-09-03

摘要: 为提升电力系统的运行安全及保障电力市场的正常运作,针对用能安全防护中的窃电检测能力不足问题,提出一种基于异构联邦学习(HeteroFL)的框架检测方法。首先,结合CKKS全同态加密技术和数据不平衡处理策略,以提升检测的准确性与数据安全性;其次,在不共享用户敏感信息的前提下,通过为每个售电商建立本地模型并协同训练,构建统一的窃电检测模型;最后,考虑诚实用电与恶意窃电数据比例严重不平衡的现实情况,引入特征平衡及注意力原型机制,以增强模型对电力消耗时间序列中异常模式的识别能力。结果表明: 基于HeteroFL检测框架在确保用户数据全程隐私安全的前提下,可显著提升窃电行为识别的准确性与稳健性,并在应对严重数据不平衡挑战时展现出出色的泛化能力,为同类隐私敏感且类别分布偏差明显的应用场景提供可推广的高效范式。

关键词: 窃电检测, 异构联邦学习(HeteroFL), 本地模型, 特征平衡, CKKS同态加密

Abstract:

To enhance the operational security of power systems and ensure the stable functioning of the electricity market, a detection method based on a HeteroFL framework was proposed to address the insufficient capability of electricity theft detection in energy security. Firstly, the approach integrated the CKKS fully homomorphic encryption scheme and data imbalance handling strategies to improve both detection accuracy and data privacy. Secondly, without sharing users' sensitive information, the method built local models for each power retailer and collaboratively trained them to construct a unified electricity theft detection model. Finally, by considering the significant imbalance between normal and malicious electricity consumption data, feature balance and an attention-based prototype mechanism were introduced to enhance the model's ability to identify anomalous patterns in electricity consumption time series. Experimental results indicate that the proposed HeteroFL detection framework, while guaranteeing end-to-end user data privacy, significantly enhances the accuracy and robustness of electricity theft identification. Moreover, it demonstrates superior generalization performance under severe data imbalance conditions, offering an effective and scalable paradigm for other privacy-sensitive applications with pronounced distributional skew.

Key words: electricity theft detection, heterogeneous federated learning (HeteroFL), local model, feature balance, cheon kim kim song (CKKS) homomorphic encryption

中图分类号: