中国安全科学学报

• 职业安全卫生 • 上一篇    下一篇

Logistic回归模型在尘肺发病预测与控制中的应 用研究

刘宝龙,樊晶光,陈胜,耿凤,刘铁民,刘占元   

  1. 安全科学技术研究中心
  • 出版日期:2001-01-20

Studies on the Application of Logistic Regression Model to Prediction and Control of Pneumoconiosis

  • Published:2001-01-20

摘要: 目的:探讨Logistic回归模型在尘肺发病预测与控制 中的应用。方法:采用多元Logistic回归统计方法建立粉尘作业工人的接尘工龄(ET)、工 龄平均浓度(AEC)、粉尘毒性(T)三因素与尘肺发病概率的回归模型。结果:尘肺发病预 测与控制的回归模型为:P=1/{1+exp[-(-5.4707+0.0947ET+0.0024AEC+1.9784T )]},接尘工龄等三因素对尘肺发病影响的比数比分别为:1.0994(ET)、1.0024(AEC )和7.2310(T)。结论:所建立尘肺发病预测与控制的回归模型与所研究人群的符合率较 高,对今后预防尘肺发生的科学化管理与决策有较好的实用性和应用价值。

Abstract: o probe the application of logistic regression model to the predi ction and control of pneumoconiosis. Methods: Multi-logistic regression was used to establish a regression model formed by three factors and pneumoconiosis prev alence probabilities. The three factors are exposure time (ET) of workers to the dust, the average exposure concentration (AEC) by exposure ages, and dust toxic ity (T). Results: (1) The regression model for the prediction and control of pne umoconiosis is P=1/{1+exp[-(-5.4707+0.0947ET+0.0024AEC+1.9784T)]}. ( 2) The odds rates of these three factors affecting the pneumoconiosis prevalence come respectively as follows: 1.0994(ET), 1.0024(AEC) and 7.2310(T). Conclusion s: The high conformability of the regression model for the prediction and contro l of pneumoconiosis with the subject groups suggests its better practicality and application value in the scientific management and the decision-making in the f ield of pneumoconiosis prevention.

中图分类号: