中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (S2): 116-121.doi: 10.16265/j.cnki.issn1003-3033.2023.S2.0008

• 安全工程技术 • 上一篇    下一篇

基于MFCC声音特征信号提取的托辊故障诊断

郭洁1(), 井庆贺1, 闫寿庆1, 王鑫1, 谢苗2, 吴意兵2   

  1. 1 扎赉诺尔煤业有限公司, 内蒙古 满洲里 021400
    2 辽宁工程技术大学 机械工程学院, 辽宁 阜新 123000
  • 收稿日期:2023-08-21 修回日期:2023-11-12 出版日期:2023-12-30
  • 作者简介:

    郭 洁 (1982—),女,河北沧县人,本科,高级工程师,主要从事电子工程及知识产权保护方面的研究。E-mail:

    井庆贺 高级工程师

    闫寿庆 工程师

    谢苗 教授

Roller fault diagnosis based on MFCC sound feature signal extraction

GUO Jie1(), JING Qinghe1, YAN Shouqing1, WANG Xin1, XIE Miao2, WU Yibing2   

  1. 1 Zhalainuoer Coal Industry Co., Ltd., Manzhouli Inner Mongolia 021400, China
    2 School of Mechanical Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China
  • Received:2023-08-21 Revised:2023-11-12 Published:2023-12-30

摘要:

为监测托辊健康运行状态,通过现场试验的方式提取了托辊正常音频信号与故障音频信号。针对提取的音频信号中包含有大量噪声的问题,提出一种改进的小波阈值去噪方法,该方法有效滤除了音频信号中的噪声,为信号的后期特征提取奠定了基础。为进一步研究正常音频信号与故障音频信号的特性差异性,利用梅尔倒谱系数(MFCC)特征提取法,得出了能明显观测到托辊正常状态与故障状态差异性的梅尔倒谱系数特征表征图。结果表明:故障音频信号时域图与频谱图比正常音频信号波动更加剧烈;托辊正常音频信号的梅尔倒谱系数特性表征图比故障音频信号的起始幅值高,且幅值下降更迟缓。

关键词: 托辊故障, 故障音频, 小波阈值去噪, 滤波器, 梅尔倒谱系数(MFCC)

Abstract:

In order to monitor the healthy operation state of the roller, the normal audio signal and the abnormal audio signal of the roller were extracted through the field test. Since the extracted audio signal contains a lot of noise, an improved wavelet threshold denoising method was proposed in this paper. This method effectively filtered out the noise in the audio signal and laid a foundation for the later feature extraction of the signal. In order to further study the characteristic difference between normal audio signal and abnormal audio signal, the MFCC feature extraction method was used to obtain an MFCC feature characterization map which could obviously show the difference between normal state and abnormal state of the roller. The results show that the time domain diagram and spectrum diagram of the abnormal audio signal fluctuate more violently than the normal audio signal; the MFCC feature characterization map of the normal audio signal of the roller is higher than the initial amplitude of the abnormal audio signal, and the amplitude decreases more slowly.

Key words: roller fault, abnormal audio, wavelet threshold denoising, filter, Mel-frequency cepstrum coefficient (MFCC)

中图分类号: