中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (4): 145-152.doi: 10.16265/j.cnki.issn1003-3033.2024.04.1693

• 安全工程技术 • 上一篇    下一篇

基于SBAS-InSAR和BPNN的铀尾矿坝形变智能监测与预测

周怡1(), 彭国文1,**(), 黄召2, 阳鹏飞1, 刘丹丹1, 陈小丽1   

  1. 1 南华大学 资源环境与安全工程学院,湖南 衡阳 421001
    2 中核二七二铀业有限责任公司,湖南 衡阳 421004
  • 收稿日期:2023-12-15 修回日期:2024-01-18 出版日期:2024-04-28
  • 通讯作者:
    **彭国文(1978—),男,江西抚州人,博士,教授,主要从事核设施退役处理与环境修复等方面的研究。E-mail:
  • 作者简介:

    周怡 (2000—),女,江苏盐城人,硕士研究生,研究方向为InSAR技术、安全监测与预警、放射性废物处置。E-mail:

  • 基金资助:
    国家自然科学基金资助(42377076); 湖南省自然科学基金资助(2023JJ50129)

Intelligent monitoring and prediction of deformation of uranium tailings dam based on SBAS-InSAR and BPNN

ZHOU Yi1(), PENG Guowen1,**(), HUANG Zhao2, YANG Pengfei1, LIU Dandan1, CHEN Xiaoli1   

  1. 1 School of Resource & Environment and Safety Engineering, University of South China, Hengyang Hunan 421001, China
    2 China National Nuclear Corporation 272 Uranium Industry Co., Ltd., Hengyang Hunan 421001, China
  • Received:2023-12-15 Revised:2024-01-18 Published:2024-04-28

摘要:

为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变量与年均形变速率,并用第一拦水坝的7个全球导航卫星系统(GNSS)监测站验证InSAR监测值的精度;然后,选取铀尾矿库中的雷公塘坝、南坡横坝、战斗坝和松林坝4个坝段的累计沉降量并结合降雨量进行沉降分析;最后,随机提取铀尾矿坝100个沉降点的累积沉降数据,通过BPNN预测铀尾矿坝的形变。结果表明:2年间铀尾矿库的形变速率在-60.06~34.94 mm/a,铀尾矿坝整体处于下沉状态,累计沉降量最大为-46.67 mm。BPNN预测值与实际监测值的平均绝对误差为0.586 mm,均方误差为0.624 mm。

关键词: 小基线合成孔径雷达干涉测量(SBAS-InSAR), 反向传播神经网络(BPNN), 铀尾矿库, 形变智能监测, Sentinel-1A

Abstract:

To improve the efficiency of monitoring work in the retirement treatment of uranium tailings ponds, an intelligent monitoring and prediction model of deformation of uranium tailings ponds was proposed based on SBAS-InSAR technology and BPNN. Firstly, SBAS-InSAR technology was used to obtain the cumulative deformation and annual deformation rate of the uranium tailings pond over the past two years. The accuracy of InSAR monitoring values was verified using seven Global Navigation Satellite System (GNSS) monitoring stations on the first dam. Then, the cumulative settlement of four dam sections, including Leigongtang dam, nanpo cross dam, Battle dam and Songlin dam, was selected and analyzed in conjunction with rainfall. Finally, the cumulative settlement data of 100 settlement points of the uranium tailings dam were randomly extracted to predict the deformation of the uranium tailings dam. The results show that from December 2020 to December 2022, the deformation rate of uranium tailings dam is between -60.06-34.94 mm/a. The overall settlement of the uranium tailings dam is in a sinking state, with a maximum cumulative settlement of -46.67 mm. The average absolute error between the predicted values of BPNN and the actual monitoring values is 0.586 mm, and the mean square error is 0.624 mm.

Key words: small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR), back propagation neural network(BPNN), uranium tailings pond, intelligent deformation monitoring, sentinel-1A

中图分类号: