中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (4): 135-144.doi: 10.16265/j.cnki.issn1003-3033.2024.04.1275

• 安全工程技术 • 上一篇    下一篇

基于MISSA-SVM模型的边坡稳定性预测及应用

王团辉1(), 王超1,2,3,**(), 吴顺川1,2,3, 王琦玮1, 徐健珲1   

  1. 1 昆明理工大学 国土资源工程学院,云南 昆明 650093
    2 自然资源部 高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650093
    3 云南省高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650093
  • 收稿日期:2023-12-18 修回日期:2024-02-25 出版日期:2024-04-28
  • 通讯作者:
    **王超(1984—),男,山东济宁人,博士,副教授,主要从事岩石力学及矿山安全方面的研究。E-mail:
  • 作者简介:

    王团辉 (1999—),男,河南焦作人,硕士研究生,主要研究方向为岩土工程灾害防治。E-mail:

    吴顺川 教授

  • 基金资助:
    云南省重大科技专项项目(202202AG050014); 云南省创新团队项目(202105AE160023)

Slope stability prediction and application based on MISSA-SVM model

WANG Tuanhui1(), WANG Chao1,2,3,**(), WU Shunchuan1,2,3, WANG Qiwei1, XU Jianhui1   

  1. 1 Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming Yunnan 650093, China
    2 Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming Yunnan 650093, China
    3 Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Kunming Yunnan 650093, China
  • Received:2023-12-18 Revised:2024-02-25 Published:2024-04-28

摘要:

为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型。选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6个代表性特征作为模型的预测指标。针对麻雀优化算法(SSA)存在的收敛速度慢、精确度不高、易陷入局部最优等问题,引入一维复合混沌映射、正余弦算法(SCA)、Levy飞行机制和步长因子动态调整等策略进行优化改进,构建基于MISSA-SVM的边坡稳定性预测模型。将MISSA-SVM模型应用到大溪滑坡等9组边坡工程实例进行验证。结果表明:MISSA-SVM模型的准确率、精确率、召回率、F1分数、均方误差(MSE)和曲线下面积(AUC)分别达到96.29%、92.3%、100%、0.96、0.016和0.967,均优于SSA优化的SVM模型和BP模型,预测结果与实际边坡状况完全吻合,表明MISSA-SVM模型具有较强的泛化能力。

关键词: 多策略改进麻雀搜索算法(MISSA), 支持向量机(SVM), 边坡稳定性, 正余弦算法(SCA), 预测指标

Abstract:

In order to further improve the prediction accuracy of slope stability, a slope stability prediction model based on MISSA optimized SVM was proposed. Six representative indexes, including bulk density (γ), cohesion (c), internal friction angle (Ф), slope angle (φf), slope height (H) and pore pressure ratio (ru) were selected as the prediction indexes of the model. In response to the problems of slow convergence speed, low accuracy, and susceptibility to local optima in the sparrow optimization algorithm (SSA), strategies such as one-dimensional composite chaotic mapping, SCA, Levy flight mechanism, and dynamic adjustment of step size factor are introduced for optimization and improvement. A slope stability prediction model based on MISSA-SVM was constructed. The MISSA-SVM model was applied to 9 groups of slope engineering examples, such as the Daxi landslide, for verification. The results show that the accuracy, precision, recall, F1 score, mean square error (MSE) and area under the curve (AUC) of the MISSA-SVM model reach 96.29%, 92.3%, 100%, 0.96, 0.016 and 0.967, respectively, which are better than the SSA-optimized SVM model and BP model, and the prediction results are completely consistent with the actual slope conditions, indicating that the MISSA-SVM model has strong generalization ability.

Key words: multi-strategy improvements sparrow search algorithm (MISSA), support vector machine (SVM), slope stability, sine cosine algorithm (SCA), predictive indicators

中图分类号: