| [1] | DALLARD P, FITZPATRICK A, FLINT A, et al.  The London millennium footbridge[J]. Structural Engineer, 2001, 79(22): 17-21. | 
																													
																						| [2] | ALLEN D E, PERNICA G. Control of floor vibration[M]. Ottawa: Institute for Research in Construction, 1998:1-4. | 
																													
																						| [3] | LITTLER J. Full-scale testing of large cantilever grandstands to determine their dynamic response[M]. Boca Raton: CRC Press, 2002: 135-146. | 
																													
																						| [4] | FUJINO Y, PACHECO B M, NAKAMURA S I, et al.  Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(9): 741-758. | 
																													
																						| [5] | NAKAMURA S I. Field measurements of lateral vibration on a pedestrian suspension bridge[J]. Structural Engineer, 2003, 81(22): 22-26. | 
																													
																						| [6] | DALLARD P, FITZPATRICK T, FLINT A, et al.  London millennium bridge: pedestrian-induced lateral vibration[J]. Journal of Bridge Engineering, 2001, 6(6): 412-417.  doi: 10.1061/(ASCE)1084-0702(2001)6:6(412)
 | 
																													
																						| [7] | NAKAMAURA K, KAWASAKI T. Lateral vibration of footbridge by synchronised walking[J]. Journal of Constructional Steel Research, 2006, 62(11): 1148-1160.  doi: 10.1016/j.jcsr.2006.06.023
 | 
																													
																						| [8] | CARROLL S P, OWEN J S, HUSSEIN M F. Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model[J]. Journal of Sound and Vibration, 2014, 333(22): 5865-5884.  doi: 10.1016/j.jsv.2014.06.022
 | 
																													
																						| [9] | BOCIAN M, MACDONALD J H, BUM J F, et al.  Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment[J]. Engineering Structures, 2015, 105: 62-76.  doi: 10.1016/j.engstruct.2015.09.043
																																					pmid: 28018012
 | 
																													
																						| [10] | 秦敬伟, 杨庆山. 基于双足步行模型和反馈机制的人体-结构相互作用[J]. 建筑结构学报, 2014, 35(增1): 18-24. | 
																													
																						|  | QIN Jingwei, YANG Qingshan. Human-structure interactionbased on bipedal walking model and feedback mechanism[J]. Journal of Building Structures, 2014, 35(S1):18-24. | 
																													
																						| [11] | GAO Yanan, WANG Juan , LIU Min . The vertical dynamic properties of flexible footbridges under bipedal crowd induced excitation[J]. Applied Sciences , 2017 , 7 (7): DOI:10.3390/app7070677 .  doi: 10.3390/app7070677
 | 
																													
																						| [12] | VENUTI F, BRUNO L, NAPOLI P. Pedestrian lateral action on lively footbridges: a new load model[J]. Structural Engineering International, 2007, 17(3): 236-241.  doi: 10.2749/101686607781645897
 | 
																													
																						| [13] | CARROLL S, OWEN J, HUSSEIN M. A coupled biomechanical/discrete element crowd model of crowd-bridge dynamic interaction and application to the Clifton Suspension Bridge[J]. Engineering Structures, 2013, 49: 58-75.  doi: 10.1016/j.engstruct.2012.10.020
 | 
																													
																						| [14] | HAN Huixuan, ZHOU Ding, JI Tianjian, et al.  Modelling of lateral forces generated by pedestrians walking across footbridges[J]. Applied Mathematical Modelling, 2021, 89: 1775-1791.  doi: 10.1016/j.apm.2020.08.081
 | 
																													
																						| [15] | STROGATZ S H, ABRAMS D M, MCROBIE A, et al.  Crowd synchrony on the Millennium Bridge[J]. Nature, 2005, 438(7064): 43-44.  doi: 10.1038/438043a
 | 
																													
																						| [16] | 贾布裕, 茅思奕, 陈扬文, 等. 人行桥人致横向振动的新型模型:IP-K模型[J]. 工程力学, 2022, 39(5):188-203. | 
																													
																						|  | JIA Buyu, MAO Siyi, CHEN Yangwen, et al.  A novel model for pedestrian-induced lateral vibration of footbridges:the IP-K model[J]. Engineering Mechanics, 2022, 39(5):188-203. | 
																													
																						| [17] | 朱前坤, 南娜娜, 惠晓丽, 等. 基于社会力模型的人群运动仿真模拟[C]. 第19届中国系统仿真技术及其应用学术年会论文集 (19th CCSSTA 2018), 2018: 149-153. | 
																													
																						| [18] | 宋志刚, 叶欢. 采用社会力模型估计人行桥结构侧向振动临界人数[J]. 振动工程学报, 2014, 27(2): 233-237. | 
																													
																						|  | SONG Zhigang, YE Huan. Critical human number of the laterally vibrating footbridge:an estimation method based on social force model[J]. Journal of Vibration Engineering, 2014, 27(2): 233-237. | 
																													
																						| [19] | SEITZ M J, KOSTER G. Natural discretization of pedestrian movement in continuous space[J]. Physical Review E, 2012, 86(4): 1-8. | 
																													
																						| [20] | LIN Peng, MA Jian, LO Siuming. Discrete element crowd model for pedestrian evacuation through an exit[J]. Chinese Physics B, 2016, 25(3): 241-248. | 
																													
																						| [21] | 张琼, 南娜娜, 朱前坤, 等. 基于社会力模型的人群-桥梁竖向动力耦合效应研究[J]. 振动与冲击, 2020, 39(9): 71-79. | 
																													
																						|  | ZHANG Qiong, NAN Nana, ZHU Qiankun, et al.  Analysis on the vertical coupled dynamic effect of a crowd-bridge system based on the social force model[J]. Journal of Vibration and Shock, 2020, 39(9): 71-79. | 
																													
																						| [22] | CARROLL S, OWEN J, HUSSEIN M. Modelling crowd-bridge dynamic interaction with a discretely defined crowd[J]. Journal of Sound and Vibration, 2012, 331(11):2685-2709.  doi: 10.1016/j.jsv.2012.01.025
 | 
																													
																						| [23] | JIA Buyu, YU Xiaolin, YAN Quansheng, et al.  Nonlinear stochastic analysis for lateral vibration of footbridge under pedestrian narrowband excitation[J]. Mathematical Problems In Engineering, 2017, 2017: 1-12. |