中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (2): 220-226.doi: 10.16265/j.cnki.issn1003-3033.2025.02.0676

• 公共安全 • 上一篇    下一篇

城市交通突发事件风险致因与后果严重程度判别模型

范博松1(), 邵春福2, 王景升1, 刘东1   

  1. 1 中国人民公安大学 交通管理学院,北京 100038
    2 新疆大学 交通运输工程学院,新疆 乌鲁木齐 830046
  • 收稿日期:2024-09-11 修回日期:2024-11-14 出版日期:2025-02-28
  • 作者简介:

    范博松 (1996—),男,山西运城人,工学博士,讲师,主要从事城市交通安全方面的研究。E-mail:

    邵春福 教授

    王景升 副教授

    刘东 副教授

  • 基金资助:
    中央高校基本科研业务费项目(2024JKF02ZK12); 国家重点研发计划(2023YFB4302701)

Model on discriminating risk causes and consequence severity of urban traffic emergencies

FAN Bosong1(), SHAO Chunfu2, WANG Jingsheng1, LIU Dong1   

  1. 1 School of Traffic Management,People's Public Security University of China,Beijing 100038, China
    2 School of Transportation Engineering,Xinjiang University,Urumqi Xinjiang 830046, China
  • Received:2024-09-11 Revised:2024-11-14 Published:2025-02-28

摘要:

为提升城市交通突发事件后果严重程度判别的准确性,明确突发事件风险致因与后果严重程度的相关关系,构建改进的突发事件后果严重程度判别模型(IDM-ECS)并进行试验验证。首先,基于改进的特征选择算法(IFSA)筛选突发事件风险致因,得到列车兑现率、正点率、日路网客运量等重要风险致因;其次,采用改进的混合受限波尔兹曼机模型(HRBM)计算不同风险致因与后果严重程度的关系,通过比较概率值大小得到风险致因与后果严重程度的判别关系;最后,以轨道交通突发事件数据集作为试验样本进行验证,并从召回率、精确度、F1值等方面与生成受限波尔兹曼机(GRBM)、随机森林(RF)、深度森林(DF)、轻量梯度提升机(LightGBM)等4个模型进行对比。研究结果表明:列车兑现率、正点率、日路网客运量、5号线断面满载率、10号线断面满载率、信号故障以及车辆故障为7个最优风险致因。IDM-ECS模型平均的召回率为90.55%、精确度为91.89%、F1值为91.06%,均优于对比模型。

关键词: 城市交通, 突发事件, 风险致因, 后果严重程度, 判别模型, 改进的特征选择算法(IFSA)

Abstract:

In order to improve the accuracy of emergency consequence severity assessment, clarify the correlation between the risk causes and consequence severity in urban traffic emergencies, the improved discrimination model of emergency consequence severity (IDM-ECS) was constructed and experimentally verified. First, based on the IFSA, the risk causes of emergencies were screened to obtain the important risk causes such as train fulfillment rate, punctuality rate, and daily network passenger volume and so on. Secondly, the improved hybrid restricted Boltzmann machine(HRBM) model was used to calculate the relationship between different risk causes and the consequence severity, and the discriminative relationship between risk causes and the consequence severity was obtained by comparing the probability values. Finally, the dataset of rail transit emergencies was used as an experimental sample for validation. The performance was compared with four models, including Generating Restricted Boltzmann Machines (GRBM), Random Forest (RF), Deep Forest (DF), and Light Gradient Boosting Machine (LightGBM), in terms of recall, precision, and F1 value. The results show that train fulfillment rate, punctuality rate, daily network passenger volume, line 5 section full load rate, line 10 section full load rate, signal failure, and vehicle failure are the seven optimal risk causes. The IDM-ECS model has an average recall of 90.55%, precision of 91.89%, and F1 value of 91.06%, all of which are better than those of the comparison models.

Key words: urban transit, emergency, risk causes, consequence severity, discrimination model, improved feature selection algorithm (IFSA)

中图分类号: