[1] |
吴若冰, 路辉, 朱昱坤, 等. 基于多时间尺度深度学习的窃电用户检测方法研究[J]. 电测与仪表, 2024, 61(12): 178-184.
|
|
WU Ruobing, LU Hui, ZHU Yukun, et al. Research on user detection method for electricity theft based on multi-time scale deep learning[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 178-184.
|
[2] |
祁云, 薛凯隆, 李绪萍, 等. 多策略改进SSA优化KELM的边坡稳定性预测模型[J]. 中国安全科学学报, 2025, 35(3):92-98.
doi: 10.16265/j.cnki.issn1003-3033.2025.03.0134
|
|
QI Yun, XUE Kailong, LI Xuping, et al. Slope stability prediction model based on multi-strategy improved SSA for optimizing KELM[J]. China Safety Science Journal, 2025, 35(3):92-98.
doi: 10.16265/j.cnki.issn1003-3033.2025.03.0134
|
[3] |
MOSTAFA N, RAMADAN H S M, ELFAROUK O. Renewable energy management in smart grids by using big data analytics and machine learning[J]. Machine Learning with Applications, 2022, 9: DOI: 10.1016/j.mlwa.2022.100363.
|
[4] |
AMIN S M, WOLLENBERG B F. Toward a smart grid: power delivery for the 21st century[J]. IEEE Power and Energy Magazine, 2005, 3(5): 34-41.
|
[5] |
林振智, 崔雪原, 金伟超, 等. 用户侧窃电检测关键技术[J]. 电力系统自动化, 2022, 46(5): 188-199.
|
|
LIN Zhenzhi, CUI Xueyuan, JIN Weichao, et al. Key technologies of electricity theft detection at consumer side[J]. Automation of Electric Power Systems, 2022, 46(5): 188-199.
|
[6] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19.
|
[7] |
金晟, 苏盛, 薛阳, 等. 数据驱动窃电检测方法综述与低误报率研究展望[J]. 电力系统自动化, 2022, 46(1): 3-14.
|
|
JIN Sheng, SU Sheng, XUE Yang, et al. Review on data-driven based electricity theft detection method and research prospect for low false positive rate[J]. Automation of Electric Power Systems, 2022, 46(1): 3-14.
|
[8] |
KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1/2): 1-210.
|
[9] |
WANG Zhibao, PAN Zhilong, XU Zhimei, et al. How does demographic transition affect energy conservation? Evidences from the resource effects of global demographic transition[J]. Journal of Cleaner Production, 2024: DOI: 10.1016/j.jclepro.2024.140954.
|
[10] |
李亚红, 李一婧, 杨小东, 等. 基于同态加密和群签名的可验证联邦学习方案[J]. 电子与信息学报, 2025, 47: 1-11.
|
|
LI Yahong, LI Yijing, YANG Xiaodong, et al. A verifiable federated learning scheme based on homomorphic encryption and group signature[J]. Journal of Electronics & Information Technology, 2025, 47: 1-11.
|
[11] |
SATHISHKUMAR P, PUGALARASAN K, PONNPARAMAGURU C, et al. Improving healthcare data security using cheon-kim-kim-song (ckks) homomorphic encryption[C]. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), 2024: 1-6.
|
[12] |
CHENG Xu, SHI Fan, LIU Yongping, et al. A class-imbalanced heterogeneous federated learning model for detecting icing on wind turbine blades[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8 487-8 497.
|
[13] |
WEN Hangguan, LIU Xiufeng, YANG Ming, et al. A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data[J]. Energy, 2024, 286: DOI: 10.1016/j.energy.2023.129593.
|
[14] |
PARIA J, NASIM A, VICTOR L C M. Electricity. Theft detection in AMI using customers' consumption patterns[J]. IEEE Transactions on Smart Grid, 2016, 7: 216-226.
|
[15] |
BRENDAN M, EIDER M, DANIEL R, et al. Communication-efficient learning of deep networks from decentralized data[C]. Artificial Intelligence and Statistics, 2017: 1 273-1 282.
|
[16] |
LIN Tsungyi, GOYAL Priya, ROSS Girshick, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2 980-2 988.
|
[17] |
YURI S A, GUSTAVO M D A, CRISTIANO LD C, et al. Learning from imbalanced data sets with weighted cross-entropy function[J]. Neural processing letters, 2019, 50: 1 937-1 949.
|
[18] |
LI Buyu, LIU Yu, WANG Xiaogang. Gradient harmonized single-stage detector[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 8 577-8 584.
|
[19] |
CAO Kaidi, WEI Colin, GAIDON A, et al. Learning imbalanced datasets with label-distribution- aware margin loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1 567-1 578.
|