China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (2): 209-216.doi: 10.16265/j.cnki.issn1003-3033.2023.02.0805
Previous Articles Next Articles
WANG Chenyu1(), OU Qichen1, GAN Mi1,2,**(
)
Received:
2022-09-19
Revised:
2022-12-10
Online:
2023-02-28
Published:
2023-08-28
WANG Chenyu, OU Qichen, GAN Mi. Comprehensive risk calculation of international freight train routes during COVID-19 pandemic[J]. China Safety Science Journal, 2023, 33(2): 209-216.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.02.0805
Tab.1
National risk indicators of China-Europe and China-Asia freight train routes during COVID-19 pandemic
目标层 | 指标 | 指标性质 | 数据来源 |
---|---|---|---|
疫情风险 | 新增病例数 | 正向 | World Health Organization |
病毒基本再生数 | 正向 | World Health Organization | |
政府疫情控制严格指数 | 逆向 | Our World in Data | |
疫苗接种情况 | 逆向 | Our World in Data | |
主流变异体首例传播时间 | 逆向 | Our World in Data | |
节点区位及贸易 重要度风险 | 从中国进口占中国总进口量比例 | 正向 | United Nations Commodity Trade Statistics Database |
出口中国占中国总出口量比例 | 正向 | ||
常态风险 | 政府腐败控制指数 | 逆向 | Worldwide Governance Indicators |
政府监管质量指数 | 逆向 | Doing business.org | |
营商便利指数 | 逆向 | United Nations | |
人均GDP/GDP增速 | 逆向 | World Bank | |
物流绩效指数 | 逆向 | ||
地缘政治风险 | 地缘政治风险考量 | 逆向 | 新闻报道 |
Tab.2
Membership values of countries alongside%
节点国家 | 聚类簇1 | 聚类簇2 | 聚类簇3 |
---|---|---|---|
西班牙 | 1.205 | 3.754 | 95.041 |
意大利 | 2.227 | 10.518 | 87.255 |
荷兰 | 0.579 | 94.407 | 5.014 |
德国 | 0.335 | 97.681 | 1.984 |
波兰 | 0.715 | 0.395 | 98.890 |
俄罗斯 | 12.528 | 5.955 | 81.516 |
蒙古 | 83.609 | 1.284 | 15.107 |
哈萨克斯坦 | 63.269 | 2.143 | 34.588 |
土耳其 | 1.965 | 0.294 | 97.741 |
伊朗 | 84.269 | 1.295 | 14.436 |
乌兹别克斯坦 | 99.867 | 0.009 | 0.125 |
塔吉克斯坦 | 98.254 | 0.183 | 1.563 |
吉尔吉斯斯坦 | 98.526 | 0.138 | 1.337 |
土库曼斯坦 | 95.141 | 0.547 | 4.312 |
[1] |
韩兆洋, 王鑫, 蒋帅, 等. 中欧班列业务流程设计与优化[J]. 中国安全科学学报, 2020, 30(增1):128-132.
|
doi: 10.16265/j.cnki.issn1003-3033.2020.S1.023 |
|
[2] |
齐慧. 中欧班列累计开行超五万列[N]. 经济日报, 2022-02-09(10).
|
[3] |
李欢. 中欧班列今年首月开行数量同比增长11%[N]. 人民铁道, 2022-02-13(1).
|
[4] |
陈云松, 陈步伟, 句国栋, 等. 突发重大疫情下城市系统风险量化评估方法[J]. 西安交通大学学报:社会科学版, 2020, 40(4):33-41.
|
|
|
[5] |
袁宏永, 陈涛, 黄丽达, 等. 全国及湖北省新冠肺炎综合风险指数分析及比较[J]. 科技导报, 2020, 38(4):21-28.
|
doi: 10.20506/rst.issue.38.1.2937 |
|
[6] |
张文斗, 祖正虎, 许晴, 等. 突发大规模疫情对经济的影响分析[J]. 军事医学, 2014, 38(2):124-128.
|
|
|
[7] |
周新辉, 李昱喆, 李富有. 新冠疫情对中小服务型企业影响评估及对策研究:基于回归算法优化模型的分析预测[J]. 经济评论, 2020, 223(3):101-117.
|
|
|
[8] |
张帅. 海上运输通道风险分析及预警模型[D]. 大连: 大连海事大学, 2011.
|
|
|
[9] |
李晶, 吕靖, 蒋永雷, 等. 我国海上通道安全评价及政策建议[J]. 中国软科学, 2017(11):8-17.
|
|
|
[10] |
吕敏, 帅斌, 张士行, 等. 国家运输支撑力下的陆上丝绸之路运输通道风险测算方法[J]. 中国安全生产科学技术, 2019, 15(11):185-190.
|
|
|
[11] |
喻小勇, 田侃. 全球公共产品视角下新冠疫苗供给分配的困境、成因与应对[J]. 南京社会科学, 2021(9):82-90.
|
|
|
[12] |
陈长坤, 赵冬月. 社会经济视角下新冠肺炎疫情危机推演与防控分析[J]. 中国安全科学学报, 2020, 30(12):24-29.
doi: 10.16265/j.cnki.issn 1003-3033.2020.12.004 |
doi: 10.16265/j.cnki.issn 1003-3033.2020.12.004 |
|
[13] |
周涛, 刘权辉, 杨紫陌, 等. 新型冠状病毒肺炎基本再生数的初步预测[J]. 中国循证医学杂志, 2020, 20(3):359-364.
|
|
|
[14] |
高新波, 裴继红, 谢维信. 模糊C-均值聚类算法中加权指数m的研究[J]. 电子学报, 2000, 28(4):80-83.
|
|
[1] | CHEN Ran, WU Shourong, LU Chao. Study on generating train stock utilization plans during epidemic period [J]. China Safety Science Journal, 2022, 32(S1): 51-56. |
[2] | MA Jian, LI Huiwen, SONG Dandan, CHEN Juan. Spatiotemporal concomitant analysis and epidemic control strategies for commuter pedestrian flow in campus [J]. China Safety Science Journal, 2022, 32(9): 86-93. |
[3] | GUO Jiuxia, YANG Zongxin, XIA Zhenghong, TANG Weizhen. Invulnerability analysis for airport weighted networks before and after COVID-19 [J]. China Safety Science Journal, 2022, 32(8): 91-97. |
[4] | ZHUANG Yue, LIANG Xiaoxiao. Resilience of urban public health system in cases of epidemic crisis [J]. China Safety Science Journal, 2022, 32(2): 167-175. |
[5] | ZHANG Xiaoliang, LIANG Fanjie, XU Surui. Risk assessment of urban gas accident unsafe behavior [J]. China Safety Science Journal, 2022, 32(12): 125-132. |
[6] | WANG Tienan, ZHAI Yue, WANG Kang, ZHAO Ruifeng, HAN Shupeng. Comprehensive risk assessment method for resuming classes in universities during COVID-19 epidemic [J]. China Safety Science Journal, 2021, 31(2): 143-148. |
[7] | GUO Yunlong. Research on transmission of infectious diseases in motor vehicles based on SIR model [J]. China Safety Science Journal, 2021, 31(1): 173-178. |
[8] | XU Shuhua, CHAN Kinsun, QI Hui. Grassroots grid emergency governance: main challenges and improvement paths [J]. China Safety Science Journal, 2021, 31(1): 8-17. |
[9] | KONG Bo, ZHAO Gang. Discussion on prevention and control points and measures of railway under normal condition of COVID-19 [J]. China Safety Science Journal, 2020, 30(S1): 16-20. |
[10] | XU Surui. Risk assessment on unsafe behavior of coal miner based on Monte Carlo method [J]. China Safety Science Journal, 2020, 30(4): 172-178. |
[11] | JING Nan, HU Yi, HAN Xishuang. Trend of COVID-19 network attention based on ARIMA and LSTM [J]. China Safety Science Journal, 2020, 30(12): 37-42. |
[12] | WEN Huiying, TANG Zuogan, LU Deyou. Modeling severity of rollover accidents accounting for heterogeneity [J]. China Safety Science Journal, 2018, 28(9): 13-18. |
[13] | YANG Yongsheng, ZHONG Shaobo, YU Zhichen, LI Yaoxuan, HUANG Quanyi. A model for dynamic risk calculation of urban gas pipeline [J]. China Safety Science Journal, 2018, 28(1): 167-172. |
[14] | LI Xinhong, CHEN Guoming, ZHU Hongwei. Research on risk-based early-warning method for corrosion failure of subsea oil & gas pipelines [J]. China Safety Science Journal, 2017, 27(7): 163-168. |
[15] | FENG Lingxiang, LIN Xinchao, GU Yifan, WANG Xinli. Studying relationship between safety inputs and safety performance of construction by agent-based model [J]. China Safety Science Journal, 2017, 27(11): 163-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||