China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (8): 69-77.doi: 10.16265/j.cnki.issn1003-3033.2024.08.1360
• Safety engineering technology • Previous Articles Next Articles
WU Xianguo1(), LIU Jun1, CAO Yuan1, LEI Yu1,**(
), LI Shifan1, QIN Yawei1,2
Received:
2024-02-21
Revised:
2024-05-28
Online:
2024-08-28
Published:
2025-02-28
Contact:
LEI Yu
CLC Number:
WU Xianguo, LIU Jun, CAO Yuan, LEI Yu, LI Shifan, QIN Yawei. Shield attitude prediction and optimization based on CatBoost-NSGA-III algorithm[J]. China Safety Science Journal, 2024, 34(8): 69-77.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.08.1360
Table 1
Statistics of preprocessed input and output parameters
参数 类型 | 变量 | 数据 | ||
---|---|---|---|---|
最小值 | 最大值 | 平均值 | ||
输入 | 土仓压力-上 x1/MPa | 0.07 | 0.21 | 0.14 |
土仓压力-下x2/MPa | 0.04 | 0.53 | 0.22 | |
土仓压力-左 x3/MPa | 0.05 | 0.29 | 0.15 | |
土仓压力-右 x4/MPa | 0.03 | 0.28 | 0.15 | |
螺旋机转速 x5/ (r·min-1) | 0.91 | 22.9 | 12.02 | |
千斤顶推力-上 x6/kN | 3.69 | 209.02 | 77.77 | |
千斤顶推力-下 x7/kN | 60.19 | 212.56 | 123.24 | |
千斤顶推力-左 x8/kN | 28.84 | 269.35 | 132.91 | |
千斤顶推力-右 x9/kN | 42.20 | 235.88 | 109.87 | |
刀盘转速 x10/(r·min-1) | 1.21 | 2.04 | 1.66 | |
刀盘扭矩 x11/(kN·m) | 719.91 | 2 998.29 | 2 058.51 | |
掘进速度 x12/ (mm·min-1) | 7.53 | 70.29 | 40.09 | |
注浆压力 x13/MPa | 0.12 | 0.31 | 0.25 | |
总推力 x14/kN | 5 441.28 | 19 086.34 | 12 249.35 | |
铰接行程 x15/m | 0.87 | 38.40 | 13.71 | |
铰接偏差-水平 x16/mm | 1.34 | 86.68 | 24.85 | |
铰接偏差-垂直 x17/mm | 0 | 59.85 | 21.15 | |
盾尾间隙-上 x18/mm | 29.03 | 79.03 | 63.81 | |
盾尾间隙-下 x19/mm | 33.81 | 83.7 | 67.81 | |
盾尾间隙-左 x20/mm | 27.03 | 83.19 | 67.37 | |
盾尾间隙-右 x21/mm | 11.49 | 189.87 | 63.33 | |
切口行程 x22/m | 1.4 | 1.54 | 1.5 | |
泡沫剂 x23/L | 25.19 | 157.79 | 47.96 | |
输出 | 切口水平方向位移 f1/mm | -39.53 | 32.03 | -0.58 |
切口垂直方向位移 f2/mm | -49.47 | 48.61 | -0.32 | |
尾部水平方向位移 f3/mm | -52.86 | 42.36 | -25.78 | |
尾部垂直方向位移 f4/mm | -46.66 | 51.94 | 16.15 | |
俯仰角 f5/(°) | -27.11 | 26.01 | -1.45 |
Table 3
Five-folds cross verification results of five shield attitude targets
折叠 序号 | f1/mm | f2/mm | f3/mm | f4/mm | f5/(°) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | |
1 | 0.934 | 3.741 | 2.922 | 0.943 | 3.418 | 2.705 | 0.917 | 3.594 | 2.827 | 0.915 | 4.372 | 3.429 | 0.909 | 0.986 | 0.833 |
2 | 0.943 | 3.456 | 2.717 | 0.949 | 3.247 | 2.575 | 0.923 | 3.466 | 2.739 | 0.920 | 4.217 | 3.291 | 0.920 | 0.922 | 0.756 |
3 | 0.949 | 3.292 | 2.611 | 0.950 | 3.216 | 2.555 | 0.925 | 3.431 | 2.721 | 0.927 | 4.037 | 3.145 | 0.915 | 0.953 | 0.781 |
4 | 0.925 | 3.976 | 3.198 | 0.939 | 3.546 | 2.851 | 0.914 | 3.674 | 2.876 | 0.911 | 4.473 | 3.555 | 0.919 | 0.930 | 0.766 |
5 | 0.922 | 4.069 | 3.297 | 0.933 | 3.715 | 3.051 | 0.912 | 3.576 | 2.906 | 0.912 | 4.442 | 3.521 | 0.920 | 0.926 | 0.760 |
平均值 | 0.934 | 3.707 | 2.950 | 0.943 | 3.428 | 2.748 | 0.918 | 3.576 | 2.814 | 0.917 | 4.308 | 3.388 | 0.916 | 0.943 | 0.779 |
Table 4
Prediction results of five methods
算法 | f1/mm | f2/mm | f3/mm | f4/mm | f5/(°) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | |
CatBoost | 0.934 | 3.707 | 2.950 | 0.943 | 3.428 | 2.748 | 0.918 | 3.576 | 2.814 | 0.917 | 4.308 | 3.388 | 0.916 | 0.943 | 0.779 |
XGBoost | 0.918 | 4.155 | 3.321 | 0.928 | 3.847 | 3.257 | 0.903 | 3.888 | 3.514 | 0.903 | 4.667 | 3.757 | 0.901 | 1.024 | 0.820 |
LightGBM | 0.926 | 3.933 | 3.047 | 0.937 | 3.582 | 2.872 | 0.913 | 3.683 | 3.092 | 0.913 | 4.405 | 3.530 | 0.911 | 0.972 | 0.794 |
GRU | 0.922 | 4.047 | 3.154 | 0.933 | 3.699 | 2.940 | 0.908 | 3.787 | 3.196 | 0.908 | 4.546 | 3.659 | 0.907 | 0.994 | 0.796 |
LSTM | 0.920 | 4.095 | 3.228 | 0.931 | 3.773 | 3.094 | 0.907 | 3.813 | 3.263 | 0.906 | 4.583 | 3.697 | 0.903 | 1.014 | 0.813 |
Table 7
Improvement degree of shield attitude in different scenarios
盾构姿态目标 | 场景 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 平均值 | ||
f1/mm | 平均值 | 14.83 (22.85%) | 13.39 (30.33%) | 12.80 (33.40%) | 13.67 (28.86%) |
f2/mm | 平均值 | 17.20 (30.94%) | 16.79 (32.55%) | 16.41 (34.11%) | 16.80 (32.53%) |
f3/mm | 平均值 | 29.13 (18.23%) | 28.41 (20.25%) | 27.13 (23.85%) | 28.22 (20.78%) |
f4/mm | 平均值 | 25.66 (12.83%) | 25.22 (14.35%) | 24.72 (16.03%) | 25.20 (14.40%) |
f5/ (mm·m-1) | 平均值 | 4.66 (12.27%) | 4.33 (18.44%) | 4.11 (22.59%) | 4.37 (17.77%) |
Pi/% | 平均值 | 46.11 | 54.18 | 60.12 | 53.35 |
f1/mm | 最优解 | 15.19 (20.94%) | 12.35 (35.74%) | 13.47 (29.92%) | 13.67 (28.87%) |
f2/mm | 最优解 | 10.08 (59.51%) | 11.31 (54.58%) | 12.12 (51.31%) | 11.17 (55.13%) |
f3/mm | 最优解 | 24.91 (30.07%) | 23.51 (34.01%) | 20.01 (43.83%) | 22.81 (35.97%) |
f4/mm | 最优解 | 21.51 (26.93%) | 24.80 (15.75%) | 23.05 (21.71%) | 23.12 (21.46%) |
f5/ (mm·m-1) | 最优解 | 4.97 (6.43%) | 4.17 (21.51%) | 3.83 (27.87%) | 4.32 (18.60%) |
Pi/% | 最优解 | 75.17 | 78.25 | 81.84 | 77.29 |
[1] |
沈翔, 袁大军. 盾构水平偏角变化对盾构-土相互作用影响[J]. 中国公路学报, 2020, 33(3): 132-143.
doi: 10.19721/j.cnki.1001-7372.2020.03.011 |
doi: 10.19721/j.cnki.1001-7372.2020.03.011 |
|
[2] |
黄威, 任梦, 陈培帅, 等. 盾构水平姿态的理论分析模型[J]. 隧道建设:中英文, 2022, 42(1): 83-89.
|
|
|
[3] |
苏栋, 谭毅俊, 沈翔, 等. 软土地层加固对盾构姿态调控及地层变形的影响研究[J]. 现代隧道技术, 2023, 60(2): 138-148,167.
|
|
|
[4] |
夏汉庸, 尹和军, 徐教煌, 等. 基于机器学习的多施工参数盾构施工姿态预测[J]. 测绘通报, 2021(1): 157-160,164.
doi: 10.13474/j.cnki.11-2246.2021.0030 |
doi: 10.13474/j.cnki.11-2246.2021.0030 |
|
[5] |
曾铁梅, 李昕懿, 冯宗宝, 等. 基于LightGBM的盾构机姿态预测与控制研究[J/OL]. 铁道标准设计: 1-11. [2024-03-14].https://doi.org/10.13238/j.issn.1004-2954.202212140005.
|
|
|
[6] |
吴坚, 曾志全, 张亚鹏, 等. 基于循环神经网络的盾构姿态及掘进参数预测[J]. 浙江工业大学学报, 2023, 51(6): 663-670.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
刘茜. 基于智能方法的盾构施工参数预测和优化控制[D]. 武汉: 华中科技大学, 2022.
|
|
|
[11] |
张利冬, 宋泽阳, 罗振敏, 等. 基于机器学习的煤自然发火期预测[J]. 中国安全科学学报, 2022, 32(12): 118-124.
doi: 10.16265/j.cnki.issn1003-3033.2022.12.0134 |
doi: 10.16265/j.cnki.issn1003-3033.2022.12.0134 |
|
[12] |
吴忠坦, 吴贤国, 刘俊, 等. 基于随机森林-NSGA-Ⅲ的盾构姿态优化控制[J]. 现代隧道技术, 2023, 60(5): 48-57.
|
|
|
[13] |
吴贤国, 冯宗宝, 刘俊, 等. 基于RF-NSGA-Ⅱ的盾构施工地表沉降安全控制多目标优化[J]. 中国安全科学学报, 2022, 32(8): 45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702 |
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702 |
[1] | WU Xianguo, LIU Jun, SU Feiming, CHEN Hongyu, FENG Zongbao. Multi-objective prediction optimization for large-diameter slurry shield tunneling construction based on CatBoost-MOEAD [J]. China Safety Science Journal, 2024, 34(6): 57-64. |
[2] | MA Tianming, HUANG Chuyuan, CHEN Xianfeng. Heterogeneous vehicle routing problem of hazardous materials transportation considering carbon emissions [J]. China Safety Science Journal, 2024, 34(1): 193-199. |
[3] | CHAI Huo, HE Ruichun, JIA Xiaoyan, DAI Cunjie. Vehicle scheduling for hazardous materials transportation based on dissimilar paths [J]. China Safety Science Journal, 2023, 33(9): 181-188. |
[4] | ZHANG Yanping, CUI Na, ZHANG Bo. Multi-objective optimization strategy of emergency material supply based on multi-mode transportation [J]. China Safety Science Journal, 2023, 33(7): 230-238. |
[5] | WANG Hui, ZHOU Guoqiang, WANG Yujian, YUE Xingqi, ZHANG Yiming. Structural parameter analysis and optimization of pneumatic safety valve in aviation propulsion system [J]. China Safety Science Journal, 2023, 33(2): 48-58. |
[6] | ZHANG Minbo, ZHONG Ziyi, YAN Jin, WANG Cuiling, WANG Zichao, LI Chunxin. Model of emergency supplies allocation in epidemic areas considering spread of biohazard diffusion [J]. China Safety Science Journal, 2023, 33(11): 206-213. |
[7] | WU Xianguo, FENG Zongbao, LIU Jun, WANG Lei, CHEN Hongyu, LI Xinyi. Multi-objective optimization of surface settlement safety control during shield construction based on RF-NSGA-II [J]. China Safety Science Journal, 2022, 32(8): 45-51. |
[8] | HONG Liang, LIU Gang, GE Ruhai, LI Liang, LI Siyuan. Multi-objective optimization of normally-open airbag of school buses under mixed conditions [J]. China Safety Science Journal, 2022, 32(4): 72-79. |
[9] | JI Xiaofeng, YANG Chunli, HAO Jingjing, QIN Wenwen. Research prospects and hotspot comparison for emergency logistics in China and foreign countries [J]. China Safety Science Journal, 2021, 31(12): 144-152. |
[10] | DU Xiuli, CAO Xiuxiu, ZHONG Zilan, HOU Benwei, WANG Wei. Robust geotechnical design of soil-pile foundation system considering multiple failure modes [J]. China Safety Science Journal, 2020, 30(6): 23-30. |
[11] | ZHAO Jianqiang, XIONG Yanming, ZHANG Youjian. Multi-objective optimization design for safety system based on isolation-inoperability competing failure mechanism [J]. China Safety Science Journal, 2020, 30(6): 1-7. |
[12] | MA Hui, ZHANG Wenjing, DONG Meihong. Spatial conflict analysis and multi-objective optimization for prefabricated building hoisting construction [J]. China Safety Science Journal, 2020, 30(2): 28-34. |
[13] | SONG Yinghua, SU Beibei, HUO Feizhou, NING Jingjing, FANG Danhui. Research on rapid location selection of emergency materials distribution center considering dynamic demand [J]. China Safety Science Journal, 2019, 29(8): 172-177. |
[14] | SONG Ye, SONG Yinghua, LIU Dan, WANG Zhe. Earthquake emergency rescue teams assignment model based on time satisfaction and competence [J]. China Safety Science Journal, 2018, 28(8): 180-185. |
[15] | SHI Jianguo, GAO Guangcai, TENG Rui. Multi objective optimization of shearer drum parametersand its influence on strength of rocker arm [J]. China Safety Science Journal, 2018, 28(8): 55-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||