China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (11): 163-171.doi: 10.16265/j.cnki.issn1003-3033.2024.11.0368
• Public safety • Previous Articles Next Articles
MA Hui(), HE Yingxia**(
), CHEN Yangyang
Received:
2024-06-12
Revised:
2024-08-15
Online:
2024-11-28
Published:
2025-01-04
Contact:
HE Yingxia
CLC Number:
MA Hui, HE Yingxia, CHEN Yangyang. Prediction of urban sewage pipeline defect probability based on XGBoost[J]. China Safety Science Journal, 2024, 34(11): 163-171.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.11.0368
Table 5
Booster parameters names and functions
参数名称 | 参数作用 |
---|---|
learning_rate | 该参数用于控制每一步迭代中模型参数的更新幅度 |
n_estimator | 该参数表示要构建的树的数量,即最大迭代次数 |
max_depth | 该参数定义了树的最大深度 |
min_child_weight | 该参数用于控制树的生长 |
subsample | 该参数指定了用于每次训练迭代的数据子集的比例 |
colsample_bytree | 该参数用于控制每棵树在训练时随机采样的特征的比例 |
gamma | 该参数用于控制树的生长,指定节点分裂所需的最小损失函数减少量 |
lambda | 该参数用于L2正则化,防止过拟合 |
scale_pos_weight | 该参数用于处理类别不平衡的问题 |
Table 6
Parameter setting and optimization results
参数名称 | 范围 | 寻优步长 | 最优取值 |
---|---|---|---|
learning_rate | (0,1] | 0.1 | 0.23 |
n_estimator | (0,1 000] | 10 | 180 |
max_depth | (0,10] | 1 | 7 |
min_child_weight | (0,10] | 1 | 1 |
subsample | (0,1] | 0.1 | 1 |
colsample_bytree | (0,1] | 0.1 | 1 |
gamma | (0,10] | 0.1 | 0 |
lambda | (0,10] | 0.1 | 1 |
scale_pos_weight | (0,30] | 1 | 15 |
[1] |
|
[2] |
|
[3] |
罗同顺, 左剑恶, 干里里, 等. 基于模糊综合评判模型的污水管道缺陷定量化评价方法[J]. 环境科学学报, 2011, 31(10):2 204-2 209.
|
|
|
[4] |
徐得潜, 张倩. 基于AHP-GRA的合流制污水管道风险评估[J]. 安全与环境学报, 2019, 19(4):1 149-1 154.
|
|
|
[5] |
巴振宁, 王鸣铄, 梁建文. 基于改进F-ANP方法的市政排水管网运行安全风险评估[J]. 安全与环境工程, 2020, 27(6):208-216.
|
|
|
[6] |
|
[7] |
|
[8] |
黄荣敏, 杜预, 张浩, 等. 基于风险指数法的排水管道健康状况影响因素研究[J]. 中国给水排水, 2023, 39(9):65-71.
|
|
|
[9] |
杨利伟, 邢雯雯, 张莉平, 等. 基于GA优化BP神经网络模型的污水管道系统健康状况评估[J]. 给水排水, 2021, 57(9):123-131.
|
|
|
[10] |
郑茂辉, 刘少非, 柳娅楠, 等. 基于粒子群优化极限学习机的排水管结构状况评价[J]. 同济大学学报:自然科学版, 2020, 48 (4): 513-516,551.
|
|
|
[11] |
郑茂辉, 刘少非. GA优化ELM神经网络的排水管道缺陷诊断[J]. 哈尔滨工业大学学报, 2021, 53(5):59-64.
|
|
|
[12] |
王颖, 王圃, 王梓璇, 等. 山地城市供水管网水质安全风险评价方法[J]. 中国安全科学学报, 2023, 33(8):205-211.
doi: 10.16265/j.cnki.issn1003-3033.2023.08.2146 |
doi: 10.16265/j.cnki.issn1003-3033.2023.08.2146 |
|
[13] |
陈少博, 杨宇轩, 王浩, 等. 南方滨海城市排水管网典型缺陷类型普查及成因机制分析[J]. 给水排水, 2022, 58(增1):464-470.
|
|
|
[14] |
李若晗. 城市污水管道检测、评价与影响因素研究[D]. 北京: 清华大学, 2016.
|
|
|
[15] |
朱彤, 秦丹, 魏雯, 等. 基于机器学习的公交驾驶员事故风险识别及影响因素研究[J]. 中国安全科学学报, 2023, 33(2):23-30.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0034 |
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0034 |
[1] | TENG Chunyang, LI Qingjian, CHEN Jingang, ZHANG Jianfei, XUE Guoqing. Remaining life prediction of roller bearings based on N-BEATS [J]. China Safety Science Journal, 2024, 34(S1): 246-252. |
[2] | GAO Fei, LIANG Ning, JIA Zhe, HOU Qing. Prediction model of coal spontaneous combustion based on SSA-RBF neural network [J]. China Safety Science Journal, 2024, 34(8): 128-137. |
[3] | ZHAO Chuan, LIU Siqi, ZHAO Xiaoyi. MET prediction model of muscle fatigue in drilling with simulated overhand position [J]. China Safety Science Journal, 2024, 34(8): 238-246. |
[4] | JIANG Song, LI Tao, LI Jinyuan, LI Yanbo, ZHANG Cunliang, ZHANG Lijie. Discrimination of dump slope stability state based on TrAdaBoost-GBDT model [J]. China Safety Science Journal, 2024, 34(11): 89-98. |
[5] | LI Delong, CHENG Yu, LI Youdong. Prediction model for demand for subway security inspectors under public health emergencies [J]. China Safety Science Journal, 2023, 33(S1): 228-234. |
[6] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[7] | SONG Yinghua, JIANG Chen, LI Moxiao, QI Shi. Rockburst prediction model based on improved Smote-GBDT algorithm [J]. China Safety Science Journal, 2023, 33(9): 25-32. |
[8] | WANG Wei, LIANG Ran, QI Yun, JIA Baoshan, WU Zewei. Prediction model of coal spontaneous combustion risk based on PSO-BPNN [J]. China Safety Science Journal, 2023, 33(7): 127-132. |
[9] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[10] | LI Shuai, LIAN Zhanghua, DING Lingling, LIAO Tao. Prediction model of sustained annular pressure of gas wells under multi-factor coupling effect [J]. China Safety Science Journal, 2023, 33(2): 166-172. |
[11] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[12] | MENG Xianghai, YOU Bingyu, QIU Zhixiong, LI Zhixiao, ZHANG Mingyang. Accident prediction model of mountainous freeway based on crash modification factors [J]. China Safety Science Journal, 2023, 33(1): 10-17. |
[13] | YANG Peipei, XIONG Jian, HE Yangfan. Anxiety level model of drivers on sharp circular curve road [J]. China Safety Science Journal, 2023, 33(1): 227-232. |
[14] | JIN Lianghai, CHEN Ying, YANG Yingliu, SHAO Bo. Generalized algebraic difference approach prediction model for elevator equipment safety accidents rate [J]. China Safety Science Journal, 2023, 33(1): 64-69. |
[15] | JING Fei. Research on human factors analysis of railway violations based on data analysis [J]. China Safety Science Journal, 2022, 32(S2): 54-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||