[1] |
齐庆杰, 王欢, 董子文, 等. 矿井胶带运输巷火灾蔓延规律的数值模拟研究[J]. 中国安全科学学报, 2016, 26(10):36-41.
|
|
QI Qingjie, WANG Huan, DONG Ziwen, et al. Numerical simulation of belt conveyor fi re spreading law in coal mine[J]. China Safety Science Journal, 2016, 26(10): 36-41.
|
[2] |
李铬, 李春广, 梁睦, 等. 煤矿带式输送机事故分析及防护措施[J]. 中国安全科学学报, 2006, 18(3):140-144,148.
|
|
LI Ge, LI Chunguang, LIANG Mu, et al. Accident analysis of belt conveyor used in coal mine and its protective measures[J]. China Safety Science Journal, 2006, 18(3): 140-144,148.
|
[3] |
都平安, 韩刚, 李金泊, 等. 基于Ansys的前倾托辊组疲劳寿命分析[J]. 起重运输机械, 2024,(3): 27-32.
|
|
DU Ping'an, HAN Gang, LI Jinbo, et al. Fatigue life analysis of forward-leaning idler set based on ansys[J]. Hoisting and Conveying Machinery, 2024,(3): 27-32.
|
[4] |
高波, 袁媛, 岳伟, 等. 基于机器学习的托辊故障等级评价模型研究[J]. 物流科技, 2023, 46(13): 32-35.
|
|
GAO Bo, YUAN Yuan, YUE Wei, et al. Research on fault grade evaluation model of roller based on machine learning[J]. Logistics Sci-Tech, 2023, 46(13): 32-35.
|
[5] |
王善忠, 杨绍雷, 李深. 托辊耐久性设计及其应用研究[J]. 中国机械, 2023(7): 52-55.
|
|
WANG Shanzhong, YANG Shaolei, LI Shen. Durability design and application research of idler[J]. Machine China, 2023(7): 52-55.
|
[6] |
李锋. 托辊寿命快速试验方法的研究[J]. 煤矿机械, 2021, 42(3): 38-40.
|
|
LI Feng. Research on rapid test method of idler life[J]. Coal Mine Machinery, 2021, 42(3): 38-40.
|
[7] |
戴忠林. 带式输送机托辊轴承故障智能诊断与寿命预测研究[D]. 阜新: 辽宁工程技术大学, 2022.
|
|
DAI Zhonglin. The study of intelligent diagnosis and life prediction for idler bearing fault of belt Conveyor[D]. Fuxin:Liaoning Technical University, 2022.
|
[8] |
姚德臣, 李博阳, 刘恒畅, 等. 基于注意力GRU算法的滚动轴承剩余寿命预测[J]. 振动与冲击, 2021, 40(17): 116-123.
|
|
YAO Dechen, LI Boyang, LIU Hengchang, et al. Residual life prediction of rolling bearing based on attention GRU algorithm[J]. Journal of Vibration and Shock, 2021, 40(17): 116-123.
|
[9] |
王奉涛, 刘晓飞, 邓刚, 等. 基于长短期记忆网络的滚动轴承寿命预测方法[J]. 振动·测试与诊断, 2020, 40(2): 303-309,419.
|
|
WANG Fengtao, LIU Xiaofei, DENG Gang, et al. Remaining useful life prediction method for rolling bearing based on the long short-term memory network[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(2): 303-309,419.
|
[10] |
周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J]. 北京航空航天大学学报, 2023, 49(2): 430-443.
|
|
ZHOU Zhetao, LIU Lu, SONG Xiao, et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 430-443.
|
[11] |
刘琦. 基于卷积神经网络的滚动轴承故障诊断及剩余寿命预测研究[D]. 长春: 吉林大学, 2021.
|
|
LIU Qi. Research on fault diagnosis and remaining life prediction of rolling bearings based on convolutional neural network[D]. Changchun: Jilin University, 2021.
|
[12] |
李卓漫. 基于LSTM的滚动轴承剩余寿命预测[D]. 昆明: 昆明理工大学, 2021.
|
|
LI Zhuoman. Prediction of remaining life of rolling bearings based on lstm[D]. Kunming: Kunming University of Science and Technology, 2021.
|