[1] |
SHAIK M. A systematic review on detection and prediction of driver drowsiness[J]. Transportation Research Interdisciplinary Perspectives, 2023, 21: DOI: 10.1016/j.trip.2023.100864.
|
[2] |
MEHMOOD L, LI Heng, UMER W, et al. Non-invasive detection of mental fatigue in construction equipment operators through geometric measurements of facial features[J]. Journal of Safety Research, 2024, 89: 234-250.
doi: 10.1016/j.jsr.2024.01.013
pmid: 38858047
|
[3] |
KUWAHARA A, NISHIKAWA K, HIRAKAWA R, et al. Eye fatigue estimation using blink detection based on eye aspect ratio mapping(EARM)[J]. Cognitive Robotics, 2022, 2: 50-59.
|
[4] |
LIU Pengkun, CHI Hunglin, LI Xiao, et al. Effects of dataset characteristics on the performance of fatigue detection for crane operators using hybrid deep neural networks[J]. Automation in Construction, 2021, 132: DOI: 10.1016/j.autcon.2021.103901.
|
[5] |
孙世梅, 孙祖航, 冯子阳, 等. 基于行为安全“2-4”模型理论的建筑施工事故行为原因分析[J]. 中国安全科学学报, 2023, 33(11): 30-37.
doi: 10.16265/j.cnki.issn1003-3033.2023.11.2450
|
|
SUN Shimei, SUN Zuhang, FENG Ziyang, et al. Behavioral causes analysis of construction accidents based on behavior-based accident causation 24Model theory[J]. China Safety Science Journal, 2023, 33(11): 30-37.
doi: 10.16265/j.cnki.issn1003-3033.2023.11.2450
|
[6] |
蔡闯闯, 刘庆华. 基于多特征数据融合的疲劳驾驶检测研究[J]. 江苏科技大学学报:自然科学版, 2023, 37(5): 52-57.
|
|
CAI Chuangchuang, LIU Qinghua. Research on fatigue driving detection based on multi-feature data fusion[J]. Journal of Jiangsu Normal University: Natural Science Edition, 2023, 37(5): 52-57.
|
[7] |
辛嵩, 宋明达, 王泽明, 等. 针对特定驾驶员的疲劳驾驶检测方法[J]. 安全与环境学报, 2023, 23(1): 147-152.
|
|
XIN Song, SONG Mingda, WANG Zeming, et al. Fatigue driving detection method for specific drivers[J]. Journal of Safety and Environment, 2023, 23(1): 147-152.
|
[8] |
王红君, 白浩, 赵辉, 等. 基于计算机视觉的驾驶员疲劳状态检测预警技术[J]. 科学技术与工程, 2022, 22(12): 4887-4894.
|
|
WANG Hongjun, BAI Hao, ZHAO Hui, et al. Driver fatigue state detection and early warning technology based on computer vision[J]. Science Technology and Engineering, 2022, 22(12): 4887-4894.
|
[9] |
方浩杰, 董红召, 林少轩, 等. 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报:工学版, 2023, 57(7): 1287-1296.
|
|
FANG Haojie, DONG Hongzhao, LIN Shaoxuan, et al. Driver fatigue state detection method based on multi-feature fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57(7): 1287-1296.
|
[10] |
田水承, 郭谦, 张江江, 等. 基于蒙特卡罗法的建筑工人不安全行为风险评估[J]. 西安科技大学学报, 2023, 43(2): 373-379.
|
|
TIAN Shuicheng, GUO Qian, ZHANG Jiangjiang, et al. Risk assessment of unsafe behaviors of construction workers based on Monte Carlo method[J]. Journal of Xi'an University of Science and Technology, 2023, 43(2): 373-379.
|
[11] |
李华, 吴立舟, 薛曦澄, 等. 基于计算机视觉的高处临边作业安全巡检[J]. 中国安全科学学报, 2023, 33(9): 69-75.
doi: 10.16265/j.cnki.issn1003-3033.2023.09.0202
|
|
LI Hua, WU Lizhou, XUE Xicheng, et al. Computer vision based safety detection of high abutting edges[J]. China Safety Science Journal, 2023, 33(9): 69-75.
doi: 10.16265/j.cnki.issn1003-3033.2023.09.0202
|
[12] |
叶贵, 王妍, 任梦雪, 等. 体力疲劳对建筑工人不安全行为的影响效应研究[J]. 中国安全生产科学技术, 2023, 19(1): 122-127.
|
|
YE Gui, WANG Yan, REN Mengxue, et al. Study on influence effect of physical fatigue on unsafe behavior of construction workers[J]. Journal of Safety Science and Technology, 2023, 19(1): 122-127.
|
[13] |
史玉芳, 卢吉发. 基于SEM的建筑工人疲劳对不安全行为影响机理[J]. 西安科技大学学报, 2020, 40(4): 712-719.
|
|
SHI Yufang, LU Jifa. Research on the impact of construction workers fatigue on unsafe behaviors based on SEM[J]. Journal of Xi'an University of Science and Technology, 2020, 40(4): 712-719.
|