China Safety Science Journal ›› 2025, Vol. 35 ›› Issue (3): 28-35.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0749
• Safety social science and safety management • Previous Articles Next Articles
LI Hua(), WU Lizhou, ZHONG Xingrun, GUO Liangwei, CUI Yuxin
Received:
2024-09-20
Revised:
2024-11-23
Online:
2025-03-28
Published:
2025-09-28
CLC Number:
LI Hua, WU Lizhou, ZHONG Xingrun, GUO Liangwei, CUI Yuxin. Recognition of personnel fatigue state and unsafe behavior based on computer vision[J]. China Safety Science Journal, 2025, 35(3): 28-35.
Table 2
Fitting results of the 200th round of five model methods
训练方法 | P | R | mAP@ 0.5 | mAP@ 0.5:0.95 | 模型内 存/MB |
---|---|---|---|---|---|
YOLOv5 | 0.914 | 0.897 | 0.934 | 0.726 | 13.7 |
YOLOv5-CA | 0.923 | 0.901 | 0.942 | 0.723 | 15.2 |
YOLOv5-CBAM | 0.911 | 0.909 | 0.941 | 0.722 | 14.7 |
YOLOv5-ECA | 0.923 | 0.905 | 0.940 | 0.723 | 13.7 |
YOLOv5-SE | 0.904 | 0.904 | 0.934 | 0.715 | 14.7 |
[1] |
|
[2] |
doi: 10.1016/j.jsr.2024.01.013 pmid: 38858047 |
[3] |
|
[4] |
|
[5] |
孙世梅, 孙祖航, 冯子阳, 等. 基于行为安全“2-4”模型理论的建筑施工事故行为原因分析[J]. 中国安全科学学报, 2023, 33(11): 30-37.
doi: 10.16265/j.cnki.issn1003-3033.2023.11.2450 |
doi: 10.16265/j.cnki.issn1003-3033.2023.11.2450 |
|
[6] |
蔡闯闯, 刘庆华. 基于多特征数据融合的疲劳驾驶检测研究[J]. 江苏科技大学学报:自然科学版, 2023, 37(5): 52-57.
|
|
|
[7] |
辛嵩, 宋明达, 王泽明, 等. 针对特定驾驶员的疲劳驾驶检测方法[J]. 安全与环境学报, 2023, 23(1): 147-152.
|
|
|
[8] |
王红君, 白浩, 赵辉, 等. 基于计算机视觉的驾驶员疲劳状态检测预警技术[J]. 科学技术与工程, 2022, 22(12): 4887-4894.
|
|
|
[9] |
方浩杰, 董红召, 林少轩, 等. 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报:工学版, 2023, 57(7): 1287-1296.
|
|
|
[10] |
田水承, 郭谦, 张江江, 等. 基于蒙特卡罗法的建筑工人不安全行为风险评估[J]. 西安科技大学学报, 2023, 43(2): 373-379.
|
|
|
[11] |
李华, 吴立舟, 薛曦澄, 等. 基于计算机视觉的高处临边作业安全巡检[J]. 中国安全科学学报, 2023, 33(9): 69-75.
doi: 10.16265/j.cnki.issn1003-3033.2023.09.0202 |
doi: 10.16265/j.cnki.issn1003-3033.2023.09.0202 |
|
[12] |
叶贵, 王妍, 任梦雪, 等. 体力疲劳对建筑工人不安全行为的影响效应研究[J]. 中国安全生产科学技术, 2023, 19(1): 122-127.
|
|
|
[13] |
史玉芳, 卢吉发. 基于SEM的建筑工人疲劳对不安全行为影响机理[J]. 西安科技大学学报, 2020, 40(4): 712-719.
|
|
[1] | ZHANG Hao, HAIMUDULA Aierken. Enterprise safety risk management model of machinery manufacturing industry based on improved YOLOv5 [J]. China Safety Science Journal, 2025, 35(3): 52-59. |
[2] | ZHANG Zehui, ZHANG Qianlong, XU Xiaobin, ZHAO Zuguo, WANG Haiquan, LI Hao. Unsafe behavior recognition model of high climbing workers based on vision [J]. China Safety Science Journal, 2025, 35(2): 144-151. |
[3] | LIU Huilin, FANG Qiong, JIANG Yu, WEI Huazhang, WANG Tao, ZHANG Shuchuan. A lightweight forest fire detection algorithm based on YOLOv5s [J]. China Safety Science Journal, 2025, 35(1): 75-83. |
[4] | ZHAO Jiangping, WANG Xinran, WU Lizhou. Model of pavement pothole target detection with improved YOLOv5s [J]. China Safety Science Journal, 2025, 35(1): 67-74. |
[5] | LEI Bin, YAN Langlang, YU Hua, WEN Yan, ZHANG Liang, LI Zhexu. Construction of rail transit emergency early warning perception system under YOLOv5 detection algorithm [J]. China Safety Science Journal, 2024, 34(9): 225-233. |
[6] | JI Zhi'an, ZHOU Yunyi, ZHANG Yuyuan, GUO Xinran, SHI Kun. Industrial site unsafe behavior detection based on improved YOLOv5 [J]. China Safety Science Journal, 2024, 34(7): 38-43. |
[7] | WU Lizhou, LI Hua, LI Dianbin, WU Yujin, LIU Panwang, XUE Xicheng. Crane danger zone intrusion warning based on computer vision [J]. China Safety Science Journal, 2024, 34(7): 139-146. |
[8] | ZHANG Guangyuan, DENG Long, WANG Yawei, SUN Ziwei, LI Sha, CHEN Cheng. Recognition of fatigue state of high-speed rail dispatchers based on EEG signal characteristics [J]. China Safety Science Journal, 2024, 34(6): 235-246. |
[9] | ZHANG Shulin, ZHANG Ya'nan, TIAN Chao, YAN Xiang, LU Yi, SHI Shiliang. Study on flame image recognition of chemical industrial park fires based on convolutional neural network [J]. China Safety Science Journal, 2024, 34(1): 179-186. |
[10] | WANG Yaohan, SONG Zeyang, ZHANG Lidong. Research on safety sign classification based on CNN [J]. China Safety Science Journal, 2023, 33(S1): 263-269. |
[11] | LI Hua, WU Lizhou, XUE Xicheng, ZHONG Xingrun. Computer vision based safety inspection of high abutting edges [J]. China Safety Science Journal, 2023, 33(9): 69-75. |
[12] | ZHANG Lei, LI Xiwei, YAN Qianru, WANG Haosheng, LEI Weiqiang. Personnel detection algorithm in fully mechanized coal face based on improved YOLOv5s [J]. China Safety Science Journal, 2023, 33(7): 82-89. |
[13] | WANG Zhe, LI Xiang, YANG Dongliang, LIU Dan. Fire detection model of wildland-urban interface based on YOLOv5s [J]. China Safety Science Journal, 2023, 33(6): 152-158. |
[14] | ZHAO Jiangping, LIU Xingxing, ZHANG Xiangzhuo. Research on image recognition technology for external scaffold hidden danger based on improved YOLOv5s [J]. China Safety Science Journal, 2023, 33(12): 60-66. |
[15] | ZHANG Jun, YIN Liu, GONG Xinfei, XU Hehua. Small target smoke detection algorithm based on improved YOLOv5 [J]. China Safety Science Journal, 2023, 33(11): 75-81. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 201
|
|
|||||||||||||||||||||||||||||||||