[1] |
YAN Hongyan, GAO Ce, ELZARKA H, et al. Risk assessment for construction of urban rail transit projects[J]. Safety Science, 2019, 118: 583-594.
doi: 10.1016/j.ssci.2019.05.042
|
[2] |
WANG Jinghong, YAN Wenyu, XU Han, et al. Investigation of the probability of a safe evacuation to succeed in subway fire emergencies based on Bayesian theory[J]. KSCE Journal of Civil Engineering, 2018, 22(3): 877-886.
|
[3] |
ZHENG Xuanchuan, WEI Yun, QIN Yong, et al. Classification method of urban rail transit emergencies based on improved K-means algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3): 134-140.
|
[4] |
SINGH R, HORCHER D, GRAHAM D J, et al. Decomposing journey times on urban metro systems via semiparametric mixed methods[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 140-163.
|
[5] |
马壮林, 邵逸恒, 舒兰, 等. 多层网络视角下地铁网络脆弱性分析[J]. 中国安全科学学报, 2023, 33(8): 164-172.
doi: 10.16265/j.cnki.issn1003-3033.2023.08.0098
|
|
MA Zhuanglin, SHAO Yiheng, SHU Lan, et al. Vulnerability analysis of metro network from perspective of multi-layer network[J]. China Safety Science Journal, 2023, 33(8): 164-172.
doi: 10.16265/j.cnki.issn1003-3033.2023.08.0098
|
[6] |
ZHOU Zhihua, JI Feng. Deep forest[J]. National Science Review, 2019, 6(1):74-86.
doi: 10.1093/nsr/nwy108
|
[7] |
NICOLA P, LOUISE C, GENSERIK R. Learning about risk: machine learning for risk assessment[J]. Safety Science, 2019, 118: 475-486.
doi: 10.1016/j.ssci.2019.06.001
|
[8] |
李志慧, 孙雅倩, 陶鹏飞, 等. 交通事故后的交通运行风险状态等级预测方法[J]. 吉林大学学报:工学版, 2022, 52(1): 127-135.
|
|
LI Zhihui, SUN Yaqian, TAO Pengfei, et al. Prediction method of traffic operation risk level after traffic accident[J]. Journal of Jilin University:Engineering and Technology Edition, 2022, 52(1): 127-135.
|
[9] |
姜万录, 李满, 张培尧, 等. 基于全矢增强深度森林的旋转设备智能故障诊断方法[J]. 中国机械工程, 2022, 33(11): 1324-1335.
|
|
JIANG Wanlu, LI Man, ZHANG Peiyao, et al. Intelligent fault diagnosis method for rotating equipment derived from full vector enhanced deep forest[J]. China Mechanical Engineering, 2022, 33(11): 1324-1335.
|
[10] |
邵怡韦, 陈嘉宇, 林翠颖, 等. 小训练样本下齿轮箱故障诊断:一种基于改进深度森林的方法[J]. 航空学报, 2022, 43(8): 118-132.
|
|
SHAO Yiwei, CHEN Jiayu, LIN Cuiying, et al. Gearbox fault diagnosis under small training samples: an improved deep forest based method[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 118-132.
|
[11] |
范冰倩, 董秉聿, 王彪, 等. 基于深度学习的地铁施工作业人员不安全行为识别与应用[J]. 中国安全科学学报, 2023, 33(1): 41-47.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0874
|
|
FAN Bingqian, DONG Bingyu, WANG Biao, et al. Identification and application of unsafe behaviors of subway construction workers based on deep learning[J]. China Safety Science Journal, 2023, 33(1): 41-47.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0874
|
[12] |
吴海涛, 刘月, 杜彗敏. 小样本条件下地铁运营事故致因推理模型[J]. 中国安全科学学报, 2023, 33(3): 134-140.
doi: 10.16265/j.cnki.issn1003-3033.2023.03.1134
|
|
WU Haitao, LIU Yue, DU Huimin. Research on model of subway operation accident's cause under small sample condition[J]. China Safety Science Journal, 2023, 33(3): 134-140.
doi: 10.16265/j.cnki.issn1003-3033.2023.03.1134
|
[13] |
YANG Jun, DENG Jiangdong, LI Shujuan, et al. Improved traffic detection with support vector machine based on restricted Boltzmann machine[J]. Soft Computing, 2017, 21(11): 3101-3112.
|
[14] |
LI Chaopeng, WANG Jinlin, YE Xiaozhou. Using a recurrent neural network and restricted Boltzmann machines for malicious traffic detection[J]. NeuroQuantology, 2018, 16(5): 823-831.
|
[15] |
ALDWAIRI T, PERERA D, NOVOTNY M A. An evaluation of the performance of restricted Boltzmann machines as a model for anomaly network intrusion detection[J]. Computer Networks, 2018, 144: 111-119.
|
[16] |
孙兴斌, 孙彦赞, 郑小盈, 等. 面向多类不均衡网络流量的特征选择方法[J]. 计算机应用研究, 2017, 34(2): 568-571,594.
|
|
SUN Xingbin, SUN Yanzan, ZHENG Xiaoying, et al. Feature selection for multi-class imbalanced internet traffic[J]. Application Research of Computers, 2017, 34(2): 568-571,594.
|