[1] |
刘乃钰, 谢昭瑞, 张晓田, 等. 我国城市道路塌陷治理领域管理政策现状分析及思考[J]. 工程建设标准化, 2023(7):72-78.
|
|
LIU Naiyu, XIE Zhaorui, ZHANG Xiaotian, et al. Analysis and reflection on the current situation of urban road collapse management in China[J]. Standardization of Engineering Construction, 2023(7): 72-78.
|
[2] |
KULICZKOWSKA E. The interaction between road traffic safety and the condition of sewers laid under roads[J]. Transportation Research Part D: Transport and Environment, 2016, 48: 203-213.
|
[3] |
周泽林, 张凯, 张恒, 等. 属性识别理论下的岩溶隧道地表塌陷风险评价[J]. 中国安全科学学报, 2022, 32(11):105-112.
|
|
ZHOU Zelin, ZHANG Kai, ZHANG Heng, et al. Risk assessment of surface subsidence in karst tunnels under attribute recognition theory[J]. China Safety Science Journal, 2022, 32 (11): 105-112.
|
[4] |
陈菊艳, 朱斌, 彭三曦, 等. 基于AHP和GIS的矿区岩溶塌陷易发性评估:以贵州林歹岩溶矿区为例[J]. 自然灾害学报, 2021, 30(5):226-236.
|
|
CHEN Juyan, ZHU Bin, PENG Sanxi, et al. Evaluation of the susceptibility of karst collapse in mining areas based on AHP and GIS: a case study of Linxia karst mining area in Guizhou[J]. Journal of Natural Disasters, 2021, 30 (5): 226-236.
|
[5] |
管佳林, 罗周全, 杨彪, 等. 矿区岩溶地表塌陷神经网络预测模型研究[J]. 中国安全科学学报, 2011, 21(9):28-33.
|
|
GUAN Jialin, LUO Zhouquan, YANG Biao, et al. Neural network prediction model for mining area karst surface subsidence[J]. China Safety Science Journal, 2011, 21 (9): 28-33.
|
[6] |
JIANG Juncai, WANG Fei, WANG Yizhao, et al. An urban road risk assessment framework based on convolutional neural networks[J]. International Journal of Disaster Risk Science, 2023, 14(3): 475-487.
|
[7] |
郭林飞, 柴仕琦, 董静怡, 等. 我国城市路面塌陷事故统计分析[J]. 工程管理学报, 2020, 34(2):49-54.
|
|
GUO Linfei, CHAI Shiqi, DONG Jingyi, et al. A statistical analysis of urban road collapse accidents in China[J]. Journal of Engineering Management, 2020, 34 (2): 49-54.
|
[8] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
|
[9] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems (NIPS 2014), 2014, 27:2 672-2 680.
|
[10] |
TABARESTANI E S, HADIAN S, PHAM Q B, et al. Flood potential mapping by integrating the bivariate statistics, multi-criteria decision-making, and machine learning techniques[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(4): 1 415-1 430.
|
[11] |
ONUR S, SUHA B, CENK D. Mapping regional forest fire probability using artificial neural network model in a mediterranean forest ecosystem[J]. Geomatics, Natural Hazards and Risk 2016, 7: 1 645-1 658.
|
[12] |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
|
[13] |
JENA R, PRADHAN B, BEYDOUN G, et al. Earthquake hazard and risk assessment using machine learning approaches at Palu, Indonesia[J]. Science of the Total Environment, 2020, 749:DOI: 10.1016/j.scitotenv.2020.141582.
|
[14] |
HAKIM W L, REZAIE F, NUR A S, et al. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea[J]. Journal of Environmental Management, 2022, 305:DOI: 10.1016/j.jenvman.2021.114367.
|
[15] |
PAPADOPOULOU-VRYNIOTI K, BATHRELLOS G D, SKILODIMOU H D, et al. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area[J]. Engineering Geology, 2013, 158: 77-88.
|
[16] |
付康胜. 隧道施工致道路塌陷风险及后果评估体系研究[J]. 四川建材, 2023, 49(11):230-232.
|
|
FU Kangsheng. Research on the risk and consequence assessment system for road collapse caused by tunnel construction[J]. Sichuan Building Materials, 2023, 49 (11): 230-232.
|
[17] |
程鉴基. 广州市地面塌陷特征与防治对策的研究[J]. 铁道工程学报, 2012, 29(1):1-5.
|
|
CHENG Jianji. Research on ground collapse characteristics of Guangzhou and control countermeasures[J]. Journal of Railway Engineering Society, 2012, 29 (1): 1-5.
|
[18] |
钟世英, 丛波日. 城市地面塌陷灾害成因机理分析及分类[C]. 2016年全国工程地质学术年会论文集, 2016:63-67.
|
|
ZHONG Shiying, CONG Bori. The genetic machanism and classification of urban ground coolapses hazard[C]. Proceedings of the 2016 National Annual Conference on Engineering Geology, 2016:63-67.
|