China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (9): 113-121.doi: 10.16265/j.cnki.issn1003-3033.2023.09.0231
• Safety engineering technology • Previous Articles Next Articles
LIN Qing1(), YAO Junming2,3, LIANG Wei2,3,**(
), YANG Fang1, LIAO Chunyan2,3, WANG Youchun2,3
Received:
2023-03-12
Revised:
2023-06-14
Online:
2023-09-28
Published:
2024-03-28
Contact:
LIANG Wei
LIN Qing, YAO Junming, LIANG Wei, YANG Fang, LIAO Chunyan, WANG Youchun. Residual life prediction of gas generator set based on deep learning[J]. China Safety Science Journal, 2023, 33(9): 113-121.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.09.0231
Tab.2
Prediction evaluation results of different models
模型 | 训练集MAE | 训练集RMSE | 测试集MAE | 测试集RMSE |
---|---|---|---|---|
文中模型 | 0.034 639 | 0.045 485 | 0.036 83 | 0.049 707 |
FCN模型 | 0.058 074 | 0.069 215 | 0.067 861 | 0.092 036 |
LSTM模型 | 0.040 76 | 0.068 838 | 0.037 757 | 0.068 924 |
LSTM-Dense模型 | 0.038 021 | 0.049 097 | 0.039 666 | 0.053 944 |
SVR模型 | 0.051 35 | 0.061 147 | 0.072 35 | 0.102 57 |
[1] |
doi: 10.1016/j.jclepro.2019.04.133 |
[2] |
武琳玉, 梁伟, 沙夺林. 油气站场典型设备的焊缝缺陷检测与识别方法[J]. 中国安全科学学报, 2020, 30(11):108-113.
doi: 10.16265/j.cnki.issn 1003-3033.2020.11.016 |
doi: 10.16265/j.cnki.issn 1003-3033.2020.11.016 |
|
[3] |
车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14):304-312.
doi: 10.3901/JME.2021.14.304 |
doi: 10.3901/JME.2021.14.304 |
|
[4] |
裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13.
doi: 10.3901/JME.2019.08.001 |
doi: 10.3901/JME.2019.08.001 |
|
[5] |
张其霄, 董鹏, 王科文, 等. 基于贝叶斯优化LSTM的发动机剩余寿命预测[J]. 火力与指挥控制, 2022, 47(4):85-89.
|
|
|
[6] |
李亚平, 李素杰, 马波, 等. 基于TCN的滚动轴承振动趋势与剩余寿命预测研究[J]. 现代制造工程, 2021, 21(9):124-131.
|
|
|
[7] |
党英, 吉卫喜, 陆家辉, 等. 基于深度学习的铣刀剩余寿命预测方法研究[J]. 现代制造工程, 2021(12):79-87.
|
|
|
[8] |
张新生, 王旭业, 张莹莹, 等. 海底腐蚀管道剩余寿命预测与维修策略研究[J]. 中国安全科学学报, 2022, 32(3):41-47.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.006 |
doi: 10.16265/j.cnki.issn1003-3033.2022.03.006 |
|
[9] |
俞树荣, 李建华, 李淑欣, 等. 埋地管道腐蚀剩余寿命预测概率模型[J]. 中国安全科学学报, 2008, 18(6):11-15.
|
|
|
[10] |
doi: 10.1016/j.ymssp.2019.05.005 |
[11] |
|
[12] |
doi: 10.1109/TR.2021.3124944 |
[13] |
苏春, 李乐. 基于隐半马尔科夫退化模型的非等周期预防性维修优化[J]. 东南大学学报:自然科学版, 2021, 51(2):342-349.
|
|
|
[14] |
doi: 10.1016/j.jmsy.2018.04.008 |
[15] |
韩松, 徐林森. 基于主成分分析和支持向量机分类模型的滚动轴承故障诊断[J]. 科学技术与工程, 2021, 21(8):3153-3158.
|
|
|
[16] |
|
[17] |
李宁, 徐彬森, 武宏亮, 等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4):508-522.
doi: 10.7623/syxb202104008 |
doi: 10.7623/syxb202104008 |
|
[18] |
doi: 10.3390/machines10010001 |
[19] |
朱馨, 李建微, 郭伟, 等. 基于机器学习的森林火险预测模型[J]. 中国安全科学学报, 2022, 32(9):152-157.
doi: 10.16265/j.cnki.issn1003-3033.2022.09.2729 |
doi: 10.16265/j.cnki.issn1003-3033.2022.09.2729 |
|
[20] |
温海茹, 陈雯柏. 一种基于DCNN-LSTM混合模型的RUL预测方法[J]. 兵器装备工程学报, 2020, 41(12):87-92.
|
|
|
[21] |
|
[22] |
|
[23] |
邱道宏, 李术才, 张乐文, 等. 基于模型可靠性检查的QGA-SVM岩爆倾向性分类研究[J]. 应用基础与工程科学学报, 2015, 23(5):981-991.
|
|
|
[24] |
戴尉阳, 唐忠, 史晨豪, 等. 基于QGA-QBP的动力电池SOC估计[J]. 电源技术, 2021, 45(7):893-896.
|
|
|
[25] |
苏中滨, 陆艺伟, 谷俊涛, 等. 改进的QGA-ELM算法水稻叶面积指数反演模型[J]. 光谱学与光谱分析, 2021, 41(4):1227-1233.
|
|
[1] | WEI Dezhi, DU Zhiyong, TENG Chunyang, XIN Wutian, LI Zekun. Study on safety monitoring technology for chain fracture in crushing station of open-pit mine [J]. China Safety Science Journal, 2023, 33(S2): 170-175. |
[2] | ZHAO Guanghui, ZHAO Peng, HU Jinliang. Video detection algorithm based on semantic segmentation for conveyor belt deviation [J]. China Safety Science Journal, 2023, 33(S1): 81-84. |
[3] | MA Qinglu, SUN Xiao, TANG Xiaoyao, LU Jiaping, DUAN Xuefeng. Optimization method for tunnel initial fire detection based on YOLOv5s algorithm [J]. China Safety Science Journal, 2023, 33(10): 214-223. |
[4] | WANG Jinjiang, GUAN Pengting, CHEN Zhuo, GE Weifeng, JU Qian. Intelligent warning of risk during maintenance operations based on deep learning [J]. China Safety Science Journal, 2023, 33(10): 16-22. |
[5] | LI Hai, SUN Peng. Research on fire image recognition based on scientific knowledge graph [J]. China Safety Science Journal, 2023, 33(10): 147-159. |
[6] | HUANG Zhenzhen, XIAO Shuo, WANG Yu, CHEN Wei, WANG Shengzhi, JIANG Haifeng. Human activity recognition model of railway workers [J]. China Safety Science Journal, 2022, 32(6): 17-22. |
[7] | ZHANG Meng, HAN Yu, LIU Zefeng. Detection method of high-altitude safety protective equipment for construction workers based on deep learning [J]. China Safety Science Journal, 2022, 32(5): 140-146. |
[8] | GUO Wei, YUAN Hongyong, XUE Ming, WEI Pingyan. Flood inundation area extraction method of SAR images based on deep learning [J]. China Safety Science Journal, 2022, 32(4): 177-184. |
[9] | ZHAO Liang, SUN Kuiyuan, HAN Baohu, AN Wenli, LI Guoqiang. Research on safety management of coal preparation plants based on artificial intelligence video analysis [J]. China Safety Science Journal, 2021, 31(S1): 19-23. |
[10] | DUAN Zhaobin, DU Hailong, ZHANG Peng. Feature extraction of QAR data based on QAR2Vec model [J]. China Safety Science Journal, 2021, 31(1): 145-152. |
[11] | ZHAO Xinran, ZHANG Qi, WANG Weidong, XU Zhiqing. Image detection method of combustible dust cloud [J]. China Safety Science Journal, 2020, 30(4): 8-13. |
[12] | XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network [J]. China Safety Science Journal, 2019, 29(10): 12-17. |
[13] | WANG Yang, WANG Jungang. Study on safety inspection of railway train operation based on deep learning algorithm [J]. China Safety Science Journal, 2018, 28(S2): 41-45. |
[14] | TONG Ruipeng, CHEN Ce, CUI Pengcheng, FU Gui, AN Yu. Deep learning method for processing pan-scene data on construction safety [J]. China Safety Science Journal, 2017, 27(5): 1-6. |
[15] | TONG Ruipeng, CUI Pengcheng. Unsafe factor recognition and interactive analysis based on deep learning [J]. China Safety Science Journal, 2017, 27(4): 49-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||