China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (4): 177-184.doi: 10.16265/j.cnki.issn1003-3033.2022.04.026
• Technology and engineering of disaster prevention and mitigation • Previous Articles Next Articles
GUO Wei1,2(), YUAN Hongyong2, XUE Ming1, WEI Pingyan1
Received:
2021-12-15
Revised:
2022-03-17
Online:
2022-04-28
Published:
2022-10-28
GUO Wei, YUAN Hongyong, XUE Ming, WEI Pingyan. Flood inundation area extraction method of SAR images based on deep learning[J]. China Safety Science Journal, 2022, 32(4): 177-184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.04.026
[1] |
陈超, 闫艳. 应用灾害数字孪生体的应急预案演练系统[J]. 中国安全科学学报, 2021, 31(7):90-96.
doi: 10.16265/j.cnki.issn 1003-3033.2021.07.013 |
doi: 10.16265/j.cnki.issn 1003-3033.2021.07.013 |
|
[2] |
王喆, 孔维磊, 方丹辉, 等. 基于贝叶斯网络的城镇洪涝应急情景推演研究[J]. 中国安全科学学报, 2021, 31(6):182-188.
doi: 10.16265/j.cnki.issn 1003-3033.2021.06.024 |
doi: 10.16265/j.cnki.issn 1003-3033.2021.06.024 |
|
[3] |
苏龙飞, 李振轩, 高飞, 等. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1):9-19.
|
|
|
[4] |
徐鹏杰, 邓磊. 遥感技术在减灾救灾中的应用[J]. 遥感技术与应用, 2011, 26(4):512-519.
|
|
|
[5] |
于胜利, 李茂, 王保江, 等. 卫星遥感技术在铁路沿线环境防护中的应用[J]. 中国安全科学学报, 2018, 28(增2):88-92.
|
doi: 10.16265/j.cnki.issn1003-3033.2018.S2.016 |
|
[6] |
doi: 10.1080/01431169608948714 |
[7] |
闫霈, 张友静, 张元. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007(6):62-67.
|
|
|
[8] |
doi: 10.1016/j.rse.2013.08.029 |
[9] |
李艳华, 丁建丽, 闫人华. 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015, 37(2):408-416.
|
|
|
[10] |
doi: 10.1007/s40899-017-0184-6 |
[11] |
杨文亮, 杨敏华, 祁洪霞. 利用BP神经网络提取TM影像水体[J]. 测绘科学, 2012, 37(1):148-150.
|
|
|
[12] |
李士进, 王声特. 基于混合特征空间MRF(Markov Random Filed)模型的高分辨率遥感影像水体提取[J]. 南京师大学报:自然科学版, 2017, 40(1):13-19.
|
|
|
[13] |
|
[14] |
贾诗超, 薛东剑, 李成绕, 等. 基于Sentinel-1数据的水体信息提取方法研究[J]. 人民长江, 2019, 50(2):213-217.
|
|
|
[15] |
吴效勇, 王晓青, 丁玲, 等. 基于光学与SAR影像的老挝溃坝洪涝灾害监测与评估[J]. 灾害学, 2020, 35(1):211-215.
|
|
|
[16] |
湛南渝, 李小涛, 路京选, 等. 基于SLIC的哨兵1号雷达数据水体信息提取[J]. 人民长江, 2020, 51(4):213-217,225.
|
|
|
[17] |
陈媛媛, 郑加柱, 魏浩翰, 等. 基于Sentinel-1A数据的南京市水体信息提取[J]. 地理空间信息, 2020, 18(9):62-65,67.
|
|
|
[18] |
李玲玉, 张毅. 一种基于新差异算子和纹理的SAR图像水体变化检测算法[J]. 计算机与现代化, 2020(4):85-94.
|
|
|
[19] |
doi: 10.1142/S1793351X20400036 |
[20] |
doi: 10.3390/ECRS-3-06201 |
[21] |
李成绕, 薛东剑, 张露, 等. 基于Sentinel-1A卫星SAR数据的水体提取方法研究[J]. 地理空间信息, 2018, 16(1):38-40.
|
|
|
[22] |
|
[1] | WEI Dezhi, DU Zhiyong, TENG Chunyang, XIN Wutian, LI Zekun. Study on safety monitoring technology for chain fracture in crushing station of open-pit mine [J]. China Safety Science Journal, 2023, 33(S2): 170-175. |
[2] | ZHAO Guanghui, ZHAO Peng, HU Jinliang. Video detection algorithm based on semantic segmentation for conveyor belt deviation [J]. China Safety Science Journal, 2023, 33(S1): 81-84. |
[3] | LIN Qing, YAO Junming, LIANG Wei, YANG Fang, LIAO Chunyan, WANG Youchun. Residual life prediction of gas generator set based on deep learning [J]. China Safety Science Journal, 2023, 33(9): 113-121. |
[4] | MA Qinglu, SUN Xiao, TANG Xiaoyao, LU Jiaping, DUAN Xuefeng. Optimization method for tunnel initial fire detection based on YOLOv5s algorithm [J]. China Safety Science Journal, 2023, 33(10): 214-223. |
[5] | WANG Jinjiang, GUAN Pengting, CHEN Zhuo, GE Weifeng, JU Qian. Intelligent warning of risk during maintenance operations based on deep learning [J]. China Safety Science Journal, 2023, 33(10): 16-22. |
[6] | LI Hai, SUN Peng. Research on fire image recognition based on scientific knowledge graph [J]. China Safety Science Journal, 2023, 33(10): 147-159. |
[7] | HUANG Zhenzhen, XIAO Shuo, WANG Yu, CHEN Wei, WANG Shengzhi, JIANG Haifeng. Human activity recognition model of railway workers [J]. China Safety Science Journal, 2022, 32(6): 17-22. |
[8] | ZHANG Meng, HAN Yu, LIU Zefeng. Detection method of high-altitude safety protective equipment for construction workers based on deep learning [J]. China Safety Science Journal, 2022, 32(5): 140-146. |
[9] | ZHAO Liang, SUN Kuiyuan, HAN Baohu, AN Wenli, LI Guoqiang. Research on safety management of coal preparation plants based on artificial intelligence video analysis [J]. China Safety Science Journal, 2021, 31(S1): 19-23. |
[10] | DUAN Zhaobin, DU Hailong, ZHANG Peng. Feature extraction of QAR data based on QAR2Vec model [J]. China Safety Science Journal, 2021, 31(1): 145-152. |
[11] | ZHAO Xinran, ZHANG Qi, WANG Weidong, XU Zhiqing. Image detection method of combustible dust cloud [J]. China Safety Science Journal, 2020, 30(4): 8-13. |
[12] | XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network [J]. China Safety Science Journal, 2019, 29(10): 12-17. |
[13] | WANG Yang, WANG Jungang. Study on safety inspection of railway train operation based on deep learning algorithm [J]. China Safety Science Journal, 2018, 28(S2): 41-45. |
[14] | TONG Ruipeng, CHEN Ce, CUI Pengcheng, FU Gui, AN Yu. Deep learning method for processing pan-scene data on construction safety [J]. China Safety Science Journal, 2017, 27(5): 1-6. |
[15] | TONG Ruipeng, CUI Pengcheng. Unsafe factor recognition and interactive analysis based on deep learning [J]. China Safety Science Journal, 2017, 27(4): 49-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||