China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (10): 147-159.doi: 10.16265/j.cnki.issn1003-3033.2023.10.2088
• Safety engineering technology • Previous Articles Next Articles
Received:
2023-04-20
Revised:
2023-07-28
Online:
2023-11-24
Published:
2024-04-29
LI Hai, SUN Peng. Research on fire image recognition based on scientific knowledge graph[J]. China Safety Science Journal, 2023, 33(10): 147-159.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.10.2088
Tab.1
Top 20 countries/regions in fire image and related recognition fields
排名 | 国家/地区 | 大洲 | 文献 数量 | 引用量 | 篇均被 引数 |
---|---|---|---|---|---|
1 | 美国 | 北美洲 | 2 475 | 60 392 | 24.400 8 |
2 | 中国 | 亚洲 | 1 862 | 22 690 | 12.185 8 |
3 | 德国 | 欧洲 | 515 | 11 369 | 22.075 7 |
4 | 英国 | 欧洲 | 508 | 12 029 | 23.679 1 |
5 | 法国 | 欧洲 | 491 | 9 443 | 19.232 2 |
6 | 加拿大 | 北美洲 | 420 | 8 330 | 19.833 3 |
7 | 印度 | 亚洲 | 413 | 3 783 | 9.159 8 |
8 | 西班牙 | 欧洲 | 408 | 8 602 | 21.083 3 |
9 | 澳大利亚 | 大洋洲 | 389 | 8 739 | 22.465 3 |
10 | 意大利 | 欧洲 | 349 | 7 395 | 21.189 1 |
11 | 韩国 | 亚洲 | 333 | 4 552 | 13.669 7 |
12 | 日本 | 亚洲 | 329 | 3 848 | 11.696 |
13 | 巴西 | 南美洲 | 256 | 4 218 | 16.476 6 |
14 | 荷兰 | 欧洲 | 177 | 7 778 | 43.943 5 |
15 | 俄罗斯 | 欧洲 | 154 | 1 372 | 8.909 1 |
16 | 瑞士 | 欧洲 | 141 | 3 562 | 25.262 4 |
17 | 希腊 | 欧洲 | 120 | 1 987 | 16.558 3 |
18 | 台湾 | 亚洲 | 115 | 828 | 7.2 |
19 | 土耳其 | 亚、欧洲 | 114 | 981 | 8.605 3 |
20 | 比利时 | 欧洲 | 113 | 3 020 | 26.725 7 |
Tab.2
Distribution of high yielding authors in field of fire image recognition
排名 | 作者 | 国家 | 数量 | 篇均被引数 |
---|---|---|---|---|
1 | WANG Jun | 美国 | 24 | 23.208 3 |
2 | QUINTANO | 美国 | 20 | 23.35 |
3 | ROBERTS | 美国 | 20 | 42.95 |
4 | FERNANDEZ | 西班牙 | 19 | 24.526 3 |
5 | CALVO | 西班牙 | 17 | 12.705 9 |
6 | GIGLIO | 美国 | 16 | 114.937 5 |
7 | SUSANA | 西班牙 | 15 | 16.533 3 |
8 | WOOSTER | 英国 | 14 | 22.428 6 |
9 | COCHRANE | 美国 | 13 | 26.538 5 |
10 | HUDAK | 美国 | 13 | 20.923 1 |
11 | ROY | 美国 | 13 | 58.692 3 |
12 | SCHROEDER | 美国 | 13 | 100.846 2 |
13 | STOW | 美国 | 13 | 6.230 8 |
14 | BOSCHETTI | 美国 | 12 | 56.666 7 |
15 | ZHANG | 美国 | 12 | 19 |
16 | KONDRAGUNTA | 美国 | 11 | 20.454 5 |
17 | KOUTSIAS | 希腊 | 11 | 17.272 7 |
18 | PEREIRA | 葡萄牙 | 10 | 20.5 |
Tab.3
Author of highly cited literature in field of fire image recognition
排名 | 作者 | 所在机构 | 被引数量/次 |
---|---|---|---|
1 | GIGLIO | University of Maryland | 1 260 |
2 | CHUVIECO | Universidad de Alcalá | 782 |
3 | ROY | South Dakota State University | 623 |
4 | CELIK | University of the Witwatersrand | 399 |
5 | VAN | Vrije Universiteit Amsterdam | 386 |
6 | TOREYIN | Istanbul Technical University | 380 |
7 | SCHROEDER | National Oceanic and Atmospheric Administration | 378 |
8 | WOOSTER | King's College London | 345 |
Tab.4
High-frequency keywords of each cluster
主题1 | 主题2 | 主题3 | |||
---|---|---|---|---|---|
主题 | 频次 | 主题 | 频次 | 主题 | 频次 |
模型 | 374 | 火灾 | 682 | 中分辨成像光谱仪 | 394 |
动力学 | 286 | 遥感 | 371 | 算法 | 269 |
火灾探测 | 273 | 野火 | 347 | 排放物 | 202 |
分类 | 265 | 气候变化 | 327 | 验证 | 172 |
神经元 | 199 | 植被 | 293 | 生物量 | 153 |
系统 | 191 | 陆地卫星 | 236 | 卫星 | 144 |
性能 | 189 | 森林 | 212 | 毁林 | 118 |
深度学习 | 188 | 时间序列 | 164 | 燃烧区域 | 103 |
温度 | 182 | 模式 | 154 | 森林砍伐变异性 | 99 |
图像处理 | 178 | 植被指数 | 136 | 碳 | 90 |
Tab.5
Frontier dynamic comparison table under different retrieval subjects
基于Title前沿分析 | 基于Kerword前沿分析 | 基于Abstact前沿分析 | |||
---|---|---|---|---|---|
vegetation cover | 植被覆盖 | deep learning | (1)深度学习 | smoke detection | (1)烟雾探测 |
coal fire | (3)煤矿火灾 | remote sensing | 遥感 | burned area | (2)火烧迹地 |
smoke detection | (1)烟雾探测 | burned area | (2)火烧迹地 | areaforest-cover loss | 森林植被流失 |
flame retardancy | (4)阻燃性 | neuron | 神经元 | severity map | 严重程度图 |
optical depth | 光学深度 | flame retardancy | (4)阻燃性 | industrial heat source | (3)工业热源 |
[1] |
国务院安全生产委员会. “十四五”国家消防工作规划[Z].2022-02-12.
|
[2] |
国务院公安部. 关于全面推进“智慧消防”建设的指导意见[Z].2017-10-10.
|
[3] |
国务院应急管理部消防救援局. 上半年全国共处置各类警情96.2万起[OL].(2022-07-23). https://www.chinanews.com.cn/gn/2022/07-23/9810180.shtml.
|
[4] |
刘全义, 朱博, 邓力, 等. 基于机器学习的双参数火灾探测方法[J]. 中国安全科学学报, 2022, 32(5):90-96.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0874 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0874 |
|
[5] |
何永勃, 董玉珊, 雷建, 等. 飞机货舱火灾多传感器探测方法研究[J]. 中国安全科学学报, 2018, 28(5):74-79.
doi: 10.16265/j.cnki.issn1003-3033.2018.05.013 |
doi: 10.16265/j.cnki.issn1003-3033.2018.05.013 |
|
[6] |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2):242-253.
|
|
|
[7] |
杨倩. 常见文献计量学工具的分析功能比较研究[J]. 情报探索, 2021(10): 87-93.
|
|
|
[8] |
doi: 10.1016/j.rse.2013.12.008 |
[9] |
doi: 10.1016/j.rse.2016.02.054 pmid: 30158718 |
[10] |
doi: 10.13266/j.issn.0252-3116.2016.04.012 |
[11] |
doi: 10.1109/TMM.6046 |
[12] |
|
[13] |
|
[14] |
doi: 10.1007/s10694-019-00872-2 |
[15] |
doi: 10.1038/s41370-020-0246-y |
[16] |
doi: 10.1109/ACCESS.2018.2812835 |
[17] |
|
[18] |
|
[19] |
|
[20] |
doi: 10.1007/s11042-019-07785-w |
[21] |
doi: 10.1007/s10694-017-0695-6 |
[22] |
|
[23] |
|
[24] |
|
[25] |
doi: 10.1109/ACCESS.2019.2946712 |
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
doi: 10.1007/s11760-018-1319-4 |
[1] | WEI Dezhi, DU Zhiyong, TENG Chunyang, XIN Wutian, LI Zekun. Study on safety monitoring technology for chain fracture in crushing station of open-pit mine [J]. China Safety Science Journal, 2023, 33(S2): 170-175. |
[2] | ZHAO Guanghui, ZHAO Peng, HU Jinliang. Video detection algorithm based on semantic segmentation for conveyor belt deviation [J]. China Safety Science Journal, 2023, 33(S1): 81-84. |
[3] | LIN Qing, YAO Junming, LIANG Wei, YANG Fang, LIAO Chunyan, WANG Youchun. Residual life prediction of gas generator set based on deep learning [J]. China Safety Science Journal, 2023, 33(9): 113-121. |
[4] | WAN Ping, DENG Xinyan, MA Xiaofeng. Visual analysis of research status and hotspots for driving anger based on mapping knowledge domain [J]. China Safety Science Journal, 2023, 33(7): 39-50. |
[5] | WANG Zhe, LI Xiang, YANG Dongliang, LIU Dan. Fire detection model of wildland-urban interface based on YOLOv5s [J]. China Safety Science Journal, 2023, 33(6): 152-158. |
[6] | WANG Jinjiang, GUAN Pengting, CHEN Zhuo, GE Weifeng, JU Qian. Intelligent warning of risk during maintenance operations based on deep learning [J]. China Safety Science Journal, 2023, 33(10): 16-22. |
[7] | MA Qinglu, SUN Xiao, TANG Xiaoyao, LU Jiaping, DUAN Xuefeng. Optimization method for tunnel initial fire detection based on YOLOv5s algorithm [J]. China Safety Science Journal, 2023, 33(10): 214-223. |
[8] | HUANG Zhenzhen, XIAO Shuo, WANG Yu, CHEN Wei, WANG Shengzhi, JIANG Haifeng. Human activity recognition model of railway workers [J]. China Safety Science Journal, 2022, 32(6): 17-22. |
[9] | ZHANG Meng, HAN Yu, LIU Zefeng. Detection method of high-altitude safety protective equipment for construction workers based on deep learning [J]. China Safety Science Journal, 2022, 32(5): 140-146. |
[10] | LIU Quanyi, ZHU Bo, DENG Li, SHI Hang, LIANG Guanghua. Double parameters fire detection method based on machine learning [J]. China Safety Science Journal, 2022, 32(5): 90-96. |
[11] | GUO Wei, YUAN Hongyong, XUE Ming, WEI Pingyan. Flood inundation area extraction method of SAR images based on deep learning [J]. China Safety Science Journal, 2022, 32(4): 177-184. |
[12] | ZHAO Liang, SUN Kuiyuan, HAN Baohu, AN Wenli, LI Guoqiang. Research on safety management of coal preparation plants based on artificial intelligence video analysis [J]. China Safety Science Journal, 2021, 31(S1): 19-23. |
[13] | LI Jichao, GUO Shengyu, KONG Liulin, YUAN Yican, SUN Yang. Design and application of a fire detection and early warning robot in construction site [J]. China Safety Science Journal, 2021, 31(4): 141-146. |
[14] | LIU Lin, MEI Qiang, CHANG Zhipeng. Research on employees' unsafe behavior in China from 1949 to 2018: development stage, research hotspot and trend analysis [J]. China Safety Science Journal, 2021, 31(3): 1-12. |
[15] | DUAN Zhaobin, DU Hailong, ZHANG Peng. Feature extraction of QAR data based on QAR2Vec model [J]. China Safety Science Journal, 2021, 31(1): 145-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||