[1] STRACHER G B, TAYLOR T P. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59:7-17. [2] 娄和壮,贾廷贵. TG-DSC联用研究瓦斯气氛对煤自燃热特性的影响[J].中国安全科学学报,2019, 29(11):77-82. LOU Hezhuang, JIA Tinggui. Study on thermal characteristics of coal spontaneous combustion in gas atmosphere by TG-DSC coupling techniques[J]. China Safety Science Journal, 2019, 29(11):77-82. [3] 梁运涛,罗海珠. 中国煤矿火灾防治技术现状与趋势[J]. 煤炭学报, 2008, 33(2):126-130. LIANG Yuntao, LUO Haizhu. Current situation and development trend for coal mine fire prevention & extinguishing techniques in China[J]. Journal of China Coal Society, 2008, 33(2):126-130. [4] 刘英学,邬培菊.黄泥灌浆防止采空区遗煤自燃的机理分析与应用[J]. 中国安全科学学报, 1997, 7(1):39-42. LIU Yingxue, WU Peiju. Mechanism and application of thick loess fluid pouring for prevention of spontaneous combustion of residual coal in goaf[J]. China Safety Science Journal, 1997, 7(1):39-42. [5] 徐精彩,张辛亥,邓军,等. FHJ16型胶体防灭火材料的流动性实验研究[J]. 西安科技学院学报, 2003, 23(2):128-130. XU Jingcai, ZHANG Xinhai, DENG Jun, et al. Experiment on flowing characteristic of FHJ16 fire-fighting gel[J]. Journal of Xi'an University of Science and Technology, 2003, 23(2):128-130. [6] 马砺,王伟峰,邓军,等. CO2对煤升温氧化燃烧特性的影响[J]. 煤炭学报, 2014, 39(2):397-404. MA Li, WANG Weifeng, DENG Jun, et al. Effect of CO2 on characteristics of oxidation combustion for coal[J]. Journal of China Coal Society, 2014, 39(2):397-404. [7] 秦波涛,王德明.矿井防灭火技术现状及研究进展[J]. 中国安全科学学报, 2007, 17(12):80-85. QIN Botao, WANG Deming. Present Situation and development of mine fire control technology[J]. China Safety Science Journal, 2007, 17(12):80-85. [8] LYU Huifei, XIAO Yang, DENG Jun, et al. Inhibiting effects of 1-butyl-3-methyl imidazole tetrafluoroborate on coal spontaneous combustion under different oxygen concentrations[J]. Energy, 2019, 186:DOI:10.1016/j.energy.2019.115907. [9] DENG Jun, BAI Zujin, XIAO Yang, et al. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246(15):160-168. [10] LI Qingwei, XIAO Yang, ZHONG Kaiqi, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275(1):DOI:10.1016/j.fuel.2020.117981. [11] GEDIK E. Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions[J]. Energy and Buildings, 2016, 127(1):1 096-1 107. [12] TSAI T E, WU H H, CHANG C C, et al. Two-phase closed thermosyphon vapor-chamber system for electronic cooling[J]. International Communications in Heat and Mass Transfer, 2010, 37(5):484-489. [13] LIU Zhenhua, YANG Xuefei, GUO Guangliang. Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon[J]. Journal of Applied Physics, 2007, 102(1): 013526.1-013526.8. [14] LIU Zhenhua, YANG Xuefei, WANG Guosan, et al. Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon[J]. International Journal of Heat and Mass Transfer, 2010, 53:1 914-1 920. [15] XUE H S, FAN J R, HU Y C, et al. The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon[J]. Journal of Applied Physics, 2006, 100:104909. [16] CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[C/OL]. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 1995.https://digital.library.unt.edu/ark:/67531/metadc671104/. [17] 彭玉辉, 黄素逸, 黄锟剑. 纳米颗粒强化热虹吸管传热特性的实验研究[J]. 热能动力工程, 2005, 20(2):138-141. PENG Yuhui, HUANG Suyi, HUANG Kunjian. Experimental study of the intensified heat transfer characteristics of a thermosiphon through the addition of nanoparticles[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(2):138-141. [18] NOIE S H, HERIS S Z, KAHANI M, et al. Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon[J]. International Journal of Heat and Fluid Flow, 2009, 30(4):700-705. [19] NAPHON P, ASSADAMONGKOL P, BORIRAK T. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency[J]. International Communications in Heat and Mass Transfer, 2008, 35(10):1 316-1 319. [20] HERIS S Z, ESFAHANY M N, ETEMAD S G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J]. International Journal of Heat and Fluid Flow, 2007, 28(2): 203-210. [21] AZIZI M, HOSSEINI M, ZAFARNAK S, et al. Experimental analysis of thermal performance in a two-phase closed thermosiphon using graphene/water nanofluid[J]. Industrial & Engineering Chemistry Research, 2013, 52(29): 10 015-10 021. [22] JANG Juchan, RHI S H, LEE K B, et al. Thermoelectric power generation system with loop thermosyphon and TiO2-Nanofluids[J]. Advanced Materials Research, 2012, 535/536/537:2 100-2 103. [23] HUMINIC G, HUMINIC A. Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids[J]. Experimental Thermal and Fluid Science, 2011, 35(3):550-557. [24] NOIE S H, EMAMI M R S, KHOSHNOODI M. Effect of inclination angle and filling ratio on thermal performance of a two-phase closed thermosyphon under normal operating conditions[J]. Heat Transfer Engineering, 2007, 28(4):365-371. [25] 杜海燕.乙醇-水太阳能热管性能的实验研究[D].北京:北京工业大学,2008. DU Haiyan. Experimental study on the performance of ethanol-water solar heat pipe[D]. Beijing: Beijing University of Technology, 2008. [26] LIU Zhenhua, LI Yuanyang, BAO Ran. Thermal performance of inclined grooved heat pipes using nanofluids[J]. International Journal of Thermal Sciences, 2010, 49(9):1 680-1 687. [27] 屈锐. 重力热管提取储煤堆自燃热量的实验研究[D]. 西安:西安科技大学,2014. QU Rui. Experimental research of gravity heat pipe used to extract spontaneous heat storage in the coal[D]. Xi'an: Xi'an University of Science and Technology, 2014. [28] 吴鹏. 热棒布置参数与环境风速对煤堆移热实验研究[D]. 西安:西安科技大学,2018. WU Peng. Experimental study of heat pipe layout parameters and environmental wind speed on coal reactor heat transfer[D]. Xi'an: Xi'an University of Science and Technology, 2018. [29] FADHL B, WROBEL L C, JOUHAR H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2013, 60(1/2):122-131. [30] REGMI P, WONG H. Heat and mass transfer in a cylindrical heat pipe with a circular-capillary wick under small imposed temperature differences[J]. International Journal of Heat and Mass Transfer, 2018, 120:228-240. [31] JAFARI D, FRANCO A, FILIPPESCHI S, et al. Two-phase closed thermosyphons: a review of studies and solar applications[J]. Renewable and Sustainable Energy Reviews, 2016, 53:575-593. [32] LEGIERSKI J, WIECEK B, MEY G D. Measurements and simulations of transient characteristics of heat pipes[J]. Microelectronics Reliability, 2006, 46:109-115. |