[1] |
刘智心, 初秀民, 郑茂, 等. 智能船舶船岸协同实验关键技术研究[J]. 交通信息与安全, 2020, 38(2): 63-70.
|
|
LIU Zhixin, CHU Xiumin, ZHENG Mao, et al. A ship-to-shore cooperative simulation system for intelligent ship[J]. Journal of Transport Information and Safety, 2020, 38(2): 63-70.
|
[2] |
徐逸, 严新平, 高嵩. 船舶新能源系统监管平台关键技术[J]. 交通信息与安全, 2020, 38(5): 96-103.
|
|
XU Yi, YAN Xinping, GAO Song. Key technologies of supervision platform of new-energy-systems for ships[J]. Journal of Transport Information and Safety, 2020, 38(5): 96-103.
|
[3] |
吴青, 王乐, 刘佳仑. 自主水面货船研究现状与展望[J]. 智能系统学报, 2019, 14(1): 57-70.
|
|
WU Qing, WANG Le, LIU Jialun. Research status and prospects of autonomous surface cargo ships[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 57-70.
|
[4] |
严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15-20.
|
[5] |
严新平, 吴超, 马枫. 面向智能航行的货船"航行脑"概念设计[J]. 中国航海, 2017, 40(4): 95-98,136.
|
|
YAN Xinping, WU Chao, MA Feng. Conceptual design of navigation brain system for intelligent cargo ship[J]. Navigation of China, 2017, 40(4): 95-98,136.
|
[6] |
YOU Xu, MA Feng, LU Suli, et al. An integrated platform for the development of autonomous and remote-control ships[C]. 19th Conference on Computer and IT Applications in the Maritime Industries (COMPIT 2020), 2020:316-327.
|
[7] |
WROBEL K, MONTEWKA J, KUJALA P. System-theoretic approach to safety of remotely-controlled merchant vessel[J]. Ocean Engineering, 2018, 152(15): 334-345.
doi: 10.1016/j.oceaneng.2018.01.020
|
[8] |
VALDEZ B O A, KANNOS S, GOERLANDT F, et al. A systemic hazard analysis and management process for the concept design phase of an autonomous vessel[J]. Reliability Engineering & System Safety, 2019, 191:DOI: 10.1016/j.ress.2019.106584.
doi: 10.1016/j.ress.2019.106584
|
[9] |
CHAAL M, VALDEZ B O A, GLOMSRUD J A, et al. A framework to model the STPA hierarchical control structure of an autonomous ship[J]. Safety Science, 2020, 132: DOI: 10.1016/j.ssci.2020.104939.
doi: 10.1016/j.ssci.2020.104939
|
[10] |
VENTIKOS N P, CHMURSKI A, LOUZIS K. A systems-based application for autonomous vessels safety: Hazard identification as a function of increasing autonomy levels[J]. Safety Science, 2020, 131: DOI: 10.1016/j.ssci.2020.104919.
doi: 10.1016/j.ssci.2020.104919
|
[11] |
周翔宇, 吴兆麟, 王凤武, 等. 自主船舶的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19(6): 149-162.
|
|
ZHOU Xiangyu, WU Zhaolin, WANG Fengwu, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162.
|
[12] |
FLEMING C H, LEVESON N G. Early concept development and safety analysis of future transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3512-3523.
doi: 10.1109/TITS.2016.2561409
|
[13] |
吴海涛, 黎双喜. 高铁应急调度STAMP/STPA安全性分析[J]. 中国安全科学学报, 2021, 31(6): 113-120.
doi: 10.16265/j.cnki.issn 1003-3033.2021.06.015
|
|
WU Haitao, LI Shuangxi. High-speed railway emergency dispatching safety analysis based on STAMP/STPA[J]. China Safety Science Journal, 2021, 31(6): 113-120.
doi: 10.16265/j.cnki.issn 1003-3033.2021.06.015
|
[14] |
ZHOU Xiangyu, LIU Zhengjiang, WANG Fengwu, et al. A system-theoretic approach to safety and security co-analysis of autonomous ships[J]. Ocean Engineering, 2021, 222: DOI: 10.1016/j.oceaneng.2021.108569.
doi: 10.1016/j.oceaneng.2021.108569
|
[15] |
王洁宁, 李保燊, 冀姗姗. 基于STPA和模糊BN的AIDC移交人误研究[J]. 中国安全科学学报, 2019, 29(9): 27-35.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.005
|
|
WANG Jiening, LI Baoshen, JI Shanshan. Study on human error in AIDC transfer based on STPA and fuzzy BN[J]. China Safety Science Journal, 2019, 29(9): 27-35.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.005
|
[16] |
孟祥坤, 陈国明, 张肖锦, 等. 深水井控STAMP/STPA安全性分析[J]. 中国石油大学学报:自然科学版, 2019, 43(2): 131-139.
|
|
MENG Xiangkun, CHEN Guoming, ZHANG Xiaojin, et al. Safety analysis of deepwater well control based on STAMP /STPA[J]. Journal of China University of Petroleum, 2019, 43(2): 131-139.
|