[1] |
黄献智, 杜书成. 世界天然气及LNG供需现状及展望[J]. 油气储运, 2019, 38(1):12-19.
|
|
HUANG Xianzhi, DU Shucheng. Current situation and prospect of world natural gas and LNG supply and demand[J]. Oil & Gas Storage and Transportation, 2019, 38(1):12-19.
|
[2] |
田宇忠, 范洪军, 涂环, 等. 考虑多米诺效应的LNG事故后果定量风险分析[J]. 中国安全科学学报, 2019, 29(1): 68-73.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.012
|
|
TIAN Yuzhong, FAN Hongjun, TU Huan, et al. LNG accident consequence QRA considering domino effect[J]. China Safety Science Journal, 2019, 29(1):68-73.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.012
|
[3] |
刘应春, 霍家莉, 张彬. 液化天然气泄漏扩散和池火灾害研究现状与展望[J]. 南京工业大学学报:自然科学版, 2019, 41(5):664-671.
|
|
LIU Yingchun, HUO Jiali, ZHANG Bin. Perspective on liquefied natural gas leakage diffusion and pool fire research development[J]. Journal of Nanjing Tech University:Natural Science Edition, 2019, 41(5):664-671.
|
[4] |
自治区政府事故调查组. 北海液化天然气有限责任公司“11·2”较大着火事故调查报告[R/OL]. [2021-03-26]. http://yjglt.gxzf.gov.cn/gwgg/t8366212.shtml.
|
[5] |
杨洁, 李玉星, 朱建鲁, 等. 泡沫对LNG蒸气外逸率平均值与标准差的影响[J]. 中国安全科学学报, 2018, 28(10):62-66.
doi: 10.16265/j.cnki.issn1003-3033.2018.10.011
|
|
YANG Jie, LI Yuxing, ZHU Jianlu, et al. Effects of foam on LNG vapor emission rate average value and deviation[J]. China Safety Science Journal, 2018, 28(10):62-66.
doi: 10.16265/j.cnki.issn1003-3033.2018.10.011
|
[6] |
贺宝龙, 杨倩, 叶从亮, 等. 高倍泡沫加速泄漏LNG扩散的有效性模拟试验[J]. 安全与环境学报, 2017, 17(2):528-531.
|
|
HE Baolong, YANG Qian, YE Congliang, et al. Simulated experimental study for the effectiveness of the highly expandable foam via the accelerated leakage LNG dispersion[J]. Journal of Safety and Environment, 2017, 17(2):528-531.
|
[7] |
TAKENO K, ICHINOSE T, TOKUDA K, et al. Effects of high expansion foam dispersed onto leaked LNG on the atmospheric diffusion of vaporized gas[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(2):125-133.
doi: 10.1016/0950-4230(95)00062-3
|
[8] |
GEUNWOONG Y, DEDY N, MANNAN M S. Key findings of liquefied natural gas pool fire outdoor tests with expansion foam application[J]. Industrial & Engineering Chemistry Research, 2011, 50(4):2359-2372.
doi: 10.1021/ie101365a
|
[9] |
GEUNWOONG Y, DEDY N, MANNAN M S. Key observations of liquefied natural gas vapor dispersion field test with expansion foam application[J]. Industrial & Engineering Chemistry Research, 2010, 50(3):1504-1514.
doi: 10.1021/ie100822h
|
[10] |
ZHANG Bin, LIU Yi, OLEWSKI T, et al. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool[J]. Journal of Hazardous Materials, 2014, 280:380-388.
doi: 10.1016/j.jhazmat.2014.07.078
pmid: 25194555
|
[11] |
YE Congliang, HUA Min, PAN Xuhai, et al. Development of heat transfer and evaporation model of LNG covered by Hi-Ex foam[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:564-572.
doi: 10.1016/j.jlp.2016.09.014
|
[12] |
CONROY M W, TAYLOR J C, FARLEY J P, et al. Liquid drainage from high-expansion (HiEx) aqueous foams during and after filling of a container[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2013, 426:70-97.
|
[13] |
KRISHNAN P, ZHANG B, AL-RABBAT A, et al. Effects of forced convection and thermal radiation on high expansion foam used for LNG vapor risk mitigation[J]. Journal of Loss Prevention in the Process Industries, 2018, 55:423-436.
doi: 10.1016/j.jlp.2018.07.019
|