[1] |
王亮, 赖佳燕, 张自欣, 等. 基于文本挖掘和改进DEMATEL法的化工事故关键因素识别[J]. 中国安全科学学报, 2024, 34(3):20-28.
doi: 10.16265/j.cnki.issn1003-3033.2024.03.0230
|
|
WANG Liang, LAI Jiayan, ZHANG Zixin, et al. Identification of critical factors in chemical accidents based on text mining and improved DEMATEL method[J]. China Safety Science Journal, 2024, 34(3): 20-28.
doi: 10.16265/j.cnki.issn1003-3033.2024.03.0230
|
[2] |
张武星. 炼化装置高压串低压事故分析与防范[J]. 安全、健康和环境, 2022, 22(5): 23-27.
|
|
ZHANG Wuxing. Analysis and prevention of high-pressure string low-pressure accidents in refining plant[J]. Safety Health & Environment, 2022, 22(5): 23-27.
|
[3] |
ISHOLA A, MATELLINI D B, WANG Jing. A proactive approach to quantitative assessment of disruption risks of petroleum refinery operation[J]. Safety Science, 2020, 127: DOI: 10.1016/j.ssci.2020.104666.
|
[4] |
王宇, 张来斌, 胡瑾秋, 等. 基于DBN模型的炼化装置故障诊断技术研究[J]. 中国安全科学学报, 2014, 24(3):53-58.
|
|
WANG Yu, ZHANG Laibin, HU Jinqiu, et al. DBN model-based fault diagnosis technology for refining device[J]. China Safety Science Journal, 2014, 24(3): 53-58.
|
[5] |
WANG Feng, DENG Fujie, WANG Yipeng. Construction method and application of real-time monitoring and early warning model for anaerobic reactor leakage[J]. Process Safety Progress, 2020, 39(4): DOI: 10.1002/prs.12144.
|
[6] |
胡瑾秋, 张来斌, 王安琪. 炼化装置故障链式效应定量安全预警方法[J]. 化工学报, 2016, 67(7): 3091-3100.
doi: 10.11949/j.issn.0438-1157.20151774
|
|
HU Jinqiu, ZHANG Laibin, WANG Anqi. Quantitative safety early warning method of fault propagation for petrochemical plants[J]. CIESC Journal, 2016, 67(7): 3091-3100.
|
[7] |
林扬, 何亚东, 袁壮, 等. 基于PCA-SVDD的化工过程异常工况检测[J]. 过程工程学报, 2022, 22(7): 970-978.
doi: 10.12034/j.issn.1009-606X.221399
|
|
LIN Yang, HE Yadong, YUAN Zhuang, et al. Abnormal condition detection in chemical process based on PCA-SVDD[J]. The Chinese Journal of Process Engineering, 2022, 22(7): 970-978.
doi: 10.12034/j.issn.1009-606X.221399
|
[8] |
LAU C K, HENG Y S, HUSSAIN M A, et al. Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS[J]. ISA Transactions, 2010, 49(4): 559-566.
doi: 10.1016/j.isatra.2010.06.007
pmid: 20667537
|
[9] |
LIU Guoquan, JIANG Zhichao, WANG Qi. Analysis of gas leakage early warning system based on Kalman filter and optimized BP neural network[J]. IEEE Access, 2020, 8: 175 180-175 193.
|
[10] |
王奎生. 基于大数据的炼化装置机泵设备异常状态预警技术研究[J]. 安全、健康和环境, 2021, 21(5): 7-11, 32.
|
|
WANG Kuisheng. Research on abnormal state early warning technology of oil refining unit pump equipment based on big data[J]. Safety Health & Environment, 2021, 21(5): 7-11, 32.
|
[11] |
胡瑾秋, 郭放, 张来斌. 基于趋势分析的间歇过程异常工况超早期报警研究[J]. 石油学报:石油加工, 2018, 34(1): 101-107.
|
|
HU Jinqiu, GUO Fang, ZHANG Laibin. Study on abnormal situation ultra-early warning of batch process based on trend analysis[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2018, 34(1): 101-107.
|
[12] |
曾稳稳, 邓付洁, 蔡静波, 等. 环氧乙烷反应器泄漏实时监测预警模型构建方法及应用[J]. 化工进展, 2019, 38(11): 5200-5209.
doi: 10.16085/j.issn.1000-6613.2019-0143
|
|
ZENG Wenwen, DENG Fujie, CAI Jingbo, et al. Construction method and application of real-time monitoring and warning model of ethylene oxide reactor leakage[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5200-5209.
doi: 10.16085/j.issn.1000-6613.2019-0143
|
[13] |
TIAN Wende, WANG Shaochen, SUN Suli, et al. Intelligent prediction and early warning of abnormal conditions for fluid catalytic cracking process[J]. Chemical Engineering Research and Design, 2022, 181: 304-320.
|
[14] |
刘晶, 高立超, 孙跃华, 等. 基于知识和数据融合驱动的设备故障诊断方法[J]. 郑州大学学报:理学版, 2022, 54(2):39-46.
|
|
LIU Jing, GAO Lichao, SUN Yuehua, et al. Fault diagnosis method for equipment driven by knowledge and data fusion[J]. Journal of Zhengzhou University:Natural Science Edition, 2022, 54(2): 39-46.
|
[15] |
王海清, 张玉倩, 郑威, 等. 基于主次屏障的化工装置事故根因分析及“双预”机制应用[J]. 中国安全科学学报, 2024, 34(2):131-137.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.1032
|
|
WANG Haiqing, ZHANG Yuqian, ZHENG Wei, et al. Root cause analysis of chemical installation accident based on primary-secondary barriers and its application on double prevention mechanism[J]. China Safety Science Journal, 2024, 34(2): 131-137.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.1032
|
[16] |
SCHOENBERG I J. Contributions to the problem of approximation of equidistant data by analytic functions, part a: on the problem of smoothing or graduation, a first class of analytic approximation formulas[J]. Quarterly of Applied Mathematics, 1946, 4(2): 45-99.
|
[17] |
MARARAKANYE N, BEKKER B. Estimating wind power uncertainty using quantile smoothing splines regression[C]. 2022 57th International Universities Power Engineering Conference (UPEC), 2022: 1-6.
|
[18] |
YU Long, SUN Jia, GUO Yanliang, et al. Research on outlier detection in CTD conductivity data based on cubic spline fitting[J]. Frontiers in Marine Science, 2022, 9: DOI: 10.3389/fmars.2022.1030980.
|
[19] |
刘品, 刘岚岚. 可靠性工程基础(3版)[M]. 北京: 中国计量出版社, 2009:20-22.
|
[20] |
王慧, 赵国超, 宋宇宁, 等. 基于改进的威布尔分布的液压支架可靠性评估方法[J]. 中国安全科学学报, 2018, 28(5):99-104.
doi: 10.16265/j.cnki.issn1003-3033.2018.05.017
|
|
WANG Hui, ZHAO Guochao, SONG Yuning, et al. Reliability evaluation method of hydraulic support based on improved Weibull distribution[J]. China Safety Science Journal, 2018, 28(5): 99-104.
doi: 10.16265/j.cnki.issn1003-3033.2018.05.017
|
[21] |
裴峻峰, 葛慧中, 任名晨, 等. 炼化装置离心泵的维修周期及可靠性研究[J]. 机械设计与制造, 2019 (增1):57-60.
|
|
PEI Junfeng, GE Huizhong, REN Mingchen, et al. Research on the maintenance cycle and the reliability of centrifugal pump for refining and chemical equipment[J]. Machinery Design & Manufacture, 2019(S1): 57-60.
|
[22] |
吴翊, 李永乐, 胡庆军, 等. 应用数理统计[M]. 长沙: 国防科技大学出版社, 1995: 420-422.
|
[23] |
林柏泉, 张景林. 安全系统工程[M]. 北京: 中国劳动社会保障出版社, 2007: 61.
|