中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (1): 103-111.doi: 10.16265/j.cnki.issn1003-3033.2025.01.0632

• 安全工程技术 • 上一篇    下一篇

基于改进YOLO模型的中缅油气管道遥感图像高后果区识别方法

姜垣良1,2,3(), 任庆滢3,4, 任远2, 刘海鹏1,2,3, 董绍华1,3,**()   

  1. 1 中国石油大学(北京) 安全与海洋工程学院,北京 102249
    2 中国石油集团 中油国际管道公司, 北京 102206
    3 中国石油大学(北京) 油气生产安全与应急技术应急管理部重点实验室, 北京 102249
    4 中国石油大学(北京) 人工智能学院,北京 102249
  • 收稿日期:2024-08-16 修回日期:2024-10-21 出版日期:2025-01-28
  • 通信作者:
    **董绍华(1972—),男,山东寿光人,博士,二级教授,博士生导师,主要从事安全工程、管道完整性管理技术、管道运行维护技术、管道安全评价技术、管道信息工程技术等方面的研究。E-mail:
  • 作者简介:

    姜垣良 (1986—),男,吉林松原人,博士研究生,高级工程师,主要从事资源与环境、管道运输安全等方面的研究。E-mail:

    任远 高级工程师

    刘海鹏 高级工程师

    董绍华 教授

  • 基金资助:
    中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项(ZLZX2020-05)

High-consequence area indentation of remote sensing images of China-Myanmar oil and gas pipeline based on improved YOLO model

JIANG Yuanliang1,2,3(), REN Qingying3,4, REN Yuan2, LIU Haipeng1,2,3, DONG Shaohua1,3,**()   

  1. 1 College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
    2 CNPC International Pipeline Company, Beijing 102206, China
    3 Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, China University of Petroleum (Beijing), Beijing 102249, China
    4 College of Artificial Intelligence, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2024-08-16 Revised:2024-10-21 Published:2025-01-28

摘要:

为解决中缅油气管道国外段外界环境敏感且复杂多变、人工巡检难度大、危险系数高的问题,提出一种改进的高后果区目标检测算法。首先通过引入卷积注意力模块(CBAM)自适应地学习通道和空间注意力,以增强网络的感知能力和泛化能力;然后使用精确边界框回归的高效交并比(Focal-EIoU)损失全面考虑目标特征和相互关系,处理类别不平衡问题,减少易分类样本的干扰,增强模型鲁棒性;最后将改进模型应用至中缅油气管线遥感图像地区属性化智能识别,并进行相关消融试验,以验证改进YOLO模型的有效性。结果表明: 采用所提方法识别中缅油气管线遥感图像特征,田地、绿地、居住地、河流4类地区检测的平均精度均值(mAP)达68.2%;相比于YOLOv5、YOLOx及YOLOv8分别提高29%、21.6%、10.7%。

关键词: YOLO, 中缅油气管道, 遥感图像, 高后果区, 目标检测, 智能识别

Abstract:

An improved object detection algorithm for high-consequence areas was proposed to solve the problems of the sensitive and complex external environment of the overseas section of the China-Myanmar oil and gas pipeline, difficulty in manual inspection, and high-risk factors. Firstly, a convolutional block attention module was used to adaptively learn channel and spatial attention to enhance the network's perception and generalization capabilities. Then, focal and efficient intersection over union(Focal-EIoU) loss was used to comprehensively consider the target features and their associations to deal with the issues of class imbalance, reduce the interference of easy-to-classify samples, and enhance the robustness of the model. Finally, the improved model was used to intelligently recognize regional attributes of China-Myanmar oil and gas pipeline remote sensing images. Furthermore, the proposed YOLO model was validated against related ablation experiments. The results showed that for the feature recognition of remote sensing images of the China-Myanmar oil and gas pipeline, the proposed model reached a mean average precision (mAP) of 68.2% for the field, green space, settlement, and river. The model performance was improved by 29%, 21.6%, and 10.7% compared with YOLOv5, YOLOx, and YOLOv8, respectively.

Key words: YOLO, China-Myanmar oil and gas pipeline, remote sensing images, high consequence areas, object detection, intelligent identification

中图分类号: