[1] |
王晓霖, 帅健, 宋红波, 等. 输油管道高后果区识别与分级管理[J]. 中国安全科学学报, 2015, 25(6): 149-154.
|
|
WANG Xiaolin, SHUAI Jian, SONG Hongbo, et al. Identification and hierarchical management of high consequence areas for oil pipeline[J]. China Safety Science Journal, 2015, 25(6): 149-154.
|
[2] |
刘天颖, 李文根, 关佶红. 基于深度学习的光学遥感图像目标检测方法综述[J]. 无线电通信技术, 2020, 46(6): 624-634.
|
|
LIU Tianying, LI Wengen, GUAN Jihong. Deep learning based object detection in optical remote sensing images: a survey[J]. Radio Communications Technology, 2020, 46(6): 624-634.
|
[3] |
冯长峰, 王春平, 付强, 等. 基于深度学习的光学遥感图像目标检测综述[J]. 激光与红外, 2023, 53(9): 1309-1319.
|
|
FENG Changfeng, WANG Chunping, FU Qiang, et al. Survey of object detection in optical remote sensing images based on deep learning[J]. Laser & Infrared, 2023, 53(9): 1309-1319.
|
[4] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):DOI: 10.1145/3065386.
|
[5] |
YANG Yiding, ZHUANG Yin, BI Fukun, et al. M-FCN: effective fully convolutional network-based airplane detection framework[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1293-1297.
|
[6] |
CHEN Zhong, ZHANG Ting, OUYANG Chao. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sensing, 2018, 10(1): DOI: 10.3390/rs10010139.
|
[7] |
LIN Haoning, SHI Zhenwei, ZOU Zhengxia. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1665-1669.
|
[8] |
KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), 2017: DOI: 10.1109/RSIP.2017.7958815.
|
[9] |
ZHAO Juanping, ZHANG Zenghui, YU Wenxian, et al. A cascade coupled convolutional neural network guided visual attention method for ship detection from sar images[J]. IEEE Access, 2018, 6: 50 693-50 708.
|
[10] |
TANG Tianyu, ZHOU Shilin, DENG Zhipeng, et al. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks[J]. Remote Sensing, 2017, 9(11):DOI: 10.3390/rs9111170.
|
[11] |
DENG Zhipeng, SUN Hao, ZHOU Shilin, et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3652-3664.
|
[12] |
MANDAL M, SHAH M, MEENA P, et al. AVDNet: a small-sized vehicle detection network for aerial visual data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 494-498.
|
[13] |
CAI Bowen, JIANG Zhiguo, ZHANG Haopeng, et al. Airport detection using end-to-end convolutional neural network with hard example mining[J]. Remote Sensing, 2017, 9(11):DOI: 10.3390/rs9111198.
|
[14] |
HAN Xiaobing, ZHONG Yanfei, ZHANG Liangpei. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery[J]. Remote Sensing, 2017, 9(7): DOI: 10.3390/rs9070666.
|
[15] |
LI Ke, CHENG Gong, BU Shuhui, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337-2348.
|
[16] |
ZOU Zhenxia, SHI Zhenwei. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018, 27: 1100-1111.
doi: 10.1109/TIP.2017.2773199
pmid: 29220314
|
[17] |
ZHANG Gongjie, LU Shijian, ZHANG Wei. CAD-net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10 015-10 024.
|
[18] |
MA Haojie, LIU Yalan, REN Yuhuan, et al. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3[J]. Remote Sensing, 2019, 12(1):DOI: 10.3390/rs12010044.
|
[19] |
HAN Yanling, WEI Cong, ZHOU Ruyan, et al. Combining 3D-CNN and squeeze-and-excitation networks for remote sensing sea ice image classification[J]. Mathematical Problems in Engineering, 2020, 2020(1):1-15.
|
[20] |
ZENG Kan, WANG Yixiao. A deep convolutional neural network for oil spill detection from spaceborne sar images[J]. Remote Sensing, 2020, 12(6):DOI: 10.3390/rs12061015.
|
[21] |
BOCHKOVSKIY A, WANG Chienyao, LIAO Hongyuanmark. YOLOv4: optimal speed and accuracy of object detection[J]. ArXiv Preprint, 2020:DOI: 10.48550/arXiv.2004.10934.
|
[22] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19.
|
[23] |
HE Kaiming, ZHANG Xiangyu, REN Shaoping, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
doi: 10.1109/TPAMI.2015.2389824
pmid: 26353135
|
[24] |
ZHANG Yifan, REN Weiqiang, ZHANG Zhang, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|