中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 36-44.doi: 10.16265/j.cnki.issn1003-3033.2025.03.1598

• 安全社会科学与安全管理 • 上一篇    下一篇

基于改进YOLOV11的卷烟仓储人员不安全行为分类及识别

柯巍1(), 朱权洁2,**(), 陈长茂1, 吴成毅1, 刘衍1, 张艳林3   

  1. 1 湖北省烟草公司 十堰市公司,湖北 十堰 442099
    2 华北科技学院 应急技术与管理学院,河北 廊坊 065201
    3 中国烟草总公司 湖北省公司,湖北 武汉 430033
  • 收稿日期:2024-10-14 修回日期:2024-12-24 出版日期:2025-03-28
  • 通信作者:
    ** 朱权洁(1984—),男,湖北孝感人,博士,教授,主要从事数字化矿山、矿山安全、灾害监测预警等方面的研究。E-mail:
  • 作者简介:

    柯 巍 (1992—),男,湖北十堰人,博士,工程师,主要从事安全生产信息化、企业安全管理、锂离子电池安全防控等方面的工作。E-mail:

    陈长茂,政工师;

    吴成毅,政工师;

    刘 衍,工程师;

    张艳林,工程师

  • 基金资助:
    湖北省烟草公司十堰市公司科技项目(SYK2023-09); 中央高校科研业务费项目(3142021002)

Classification and recognition of unsafe behaviors of tobacco warehouse personnel based on improved YOLOv11

KE Wei1(), ZHU Quanjie2,**(), CHEN Changmao1, WU Chengyi1, LIU Yan1, ZHANG Yanlin3   

  1. 1 Shiyan Tobacco Company, Hubei Province, Shiyan Hubei 442099, China
    2 School of Safety Emergency Technology and Management, North China Institute of Science and Technology, Langfang Hebei 065201, China
    3 Hubei Branch, China National Tobacco Corporation, Wuhan Hubei 430033, China
  • Received:2024-10-14 Revised:2024-12-24 Published:2025-03-28

摘要:

为确保仓储环境内的人员与财产安全,改进传统的YOLOv11目标检测算法,提出一种适用于卷烟仓储复杂环境的人员不安全行为识别方法和模型。首先,统计分析卷烟仓储中常见的不安全行为类型,探讨仓储人员不安全行为的分类,包括物品类、动作类和区域类的不安全行为;其次,基于仓储人员不安全行为的特征,提出数据集增广和去噪预处理的思路,强化细粒度特征提取,进而改进人员行为的显著性映射;然后,通过功能增强模块和K-means++锚框优化改进YOLOv11算法,提出一种卷烟仓储人员不安全行为快速检测方法;最后,利用自建数据集和微软公开数据集(COCO)对比验证方法的有效性。结果表明:该方法能够快速、有效地识别仓储人员的不安全行为,相较于传统方法,识别准确率得到显著提升,2个数据集上的精度分别达到94.91%和88.69%,综合表现更加均衡。

关键词: 改进YOLOv11, 卷烟仓储人员, 不安全行为, 去噪, 目标检测

Abstract:

To ensure the safety of personnel and property within the storage environment, the traditional YOLOv11 object detection algorithm was improved, and a method and model to identify unsafe behaviors of personnel in the complex environment of tobacco warehouses were proposed. First, a statistical analysis of common unsafe behavior types in tobacco storage was conducted, and the classification of unsafe behaviors of warehouse personnel was explored, including item-related, action-related, and area-related unsafe behaviors. Second, based on the characteristics of unsafe behaviors of warehouse personnel, a dataset augmentation and denoising preprocessing approach was proposed to enhance fine-grained feature extraction, and introduced to improve the saliency mapping of personnel behaviors. Then, the YOLOv11 algorithm was improved through functional enhancement modules and K-means++ anchor box optimization, and a fast detection method for unsafe behaviors of tobacco warehouse personnel was proposed. Finally, the proposed method's effectiveness was validated by comparing with self-built datasets and the open Microsoft COCO dataset. The results show that the method can quickly and effectively identify unsafe behaviors of warehouse personnel, with a significant improvement in recognition accuracy compared to traditional methods(accuracy rate is 94.91% and 88.69% respectively).

Key words: improved YOLOv11, tobacco warehouse personnel, unsafe behaviors, denoising, object detection

中图分类号: