[1] |
张英杰, 巩冠群, 吴国光. 煤泥水处理方法研究[J]. 洁净煤技术, 2014, 20(3):1-4.
|
|
ZHANG Yingjie, GONG Guanqun, WU Guoguang. Research of slime water treatment methods[J]. Clean Coal Technology, 2014, 20(3):1-4.
|
[2] |
董宪姝. 煤泥水处理技术研究现状及发展趋势[J]. 选煤技术, 2018, 46(3): 1-8.
|
|
DONG Xianshu. State-of-the-art and developing trend of coal slurry treatment technology[J]. Coal Preparation Technology, 2018, 46(3):1-8.
|
[3] |
陈开玲, 钱坤. 浅析煤泥水的特点及治理方法[J]. 洁净煤技术, 2008, 14(2):15-17.
|
|
CHEN Kailing, QIAN Kun. Simply analysis characteristics and treatment methods of the slime water[J]. Clean Coal Technology, 2008, 14(2):15-17.
|
[4] |
王少会. 选煤厂煤泥水处理的应用分析[J]. 中国矿业, 2004, 13(5):56-57.
|
|
WANG Shaohui. Application and research of slurry treatment in coal preparation plant[J]. China Mining Magazine, 2004, 13(5): 56-57.
|
[5] |
孙丽梅. 选煤厂煤泥水处理系统工艺流程的改造与优化[J]. 中国矿业, 2011, 20(11): 120-124.
|
|
SUN Limei. Technical innovation model of slime treatment system for coal preparation plant[J]. China Mining Magazine, 2011, 20(11):120-124.
|
[6] |
张琦, 吉日格勒. 基于卷积神经网络的煤泥水外溢检测算法[J]. 中国安全科学学报, 2023, 33(增1): 192-195.
|
|
ZHANG Qi, Jirigele. Detection algorithm of slime water overflow based on convolutional neural network[J]. China Safety Science Journal, 2023, 33(S1): 192-195.
doi: 10.16265/j.cnki.issn1003-3033.2023.S1.5004
|
[7] |
TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO-GONZÁLEZ J A. A comprehensive review of yolo architectures in computer vision: from yolov1 to YOLOv8 and YOLO-nas[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1 680-1 716.
|
[8] |
ZHANG Yu, GUO Zhongyin, WU Jianqing, et al. Real-time vehicle detection based on improved YOLOv5[J]. Sustainability, 2022, 14(19): DOI: 10.3390/su141912274.
|
[9] |
CHEN Jincheng, BAI Shoujun, WAN Guoyang, et al. Research on YOLOv7-based defect detection method for automotive running lights[J]. Systems Science & Control Engineering, 2023, 11(1): DOI: 10.1080/21642583.2023.2185916.
|
[10] |
YUN Peng, TAI Lei, WANG Yuan, et al. Focal loss in 3d object detection[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1 263-1 270.
|
[11] |
张全法, 杨海彬, 任朝栋, 等. 彩色图像的快速高保真灰度化方法研究[J]. 郑州大学学报:理学版, 2011, 43(3): 66-69.
|
|
ZHANG Quanfa, YANG Haibin, REN Chaodong, et al. Study on fast color-to-gray image transformation with high fidelity[J]. Journal of Zhengzhou University:Natural Science Edition, 2011, 43(3):66-69.
|
[12] |
KUMAR T, VERMA K. A theory based on conversion of RGB image to gray image[J]. International Journal of Computer Applications, 2010, 7(2):7-10.
|
[13] |
李健, 丁小奇, 陈光, 等. 基于改进高斯滤波算法的叶片图像去噪方法[J]. 南方农业学报, 2019, 50(6):1 385-1 391.
|
|
LI Jian, DING Xiaoqi, CHEN Guang, et al. Blade image denoising method based on improved Gauss filtering algorithm[J]. Journal of Southern Agriculture, 2019, 50(6):1 385-1 391.
|
[14] |
王国栋, 徐洁, 潘振宽, 等. 基于归一化超拉普拉斯先验项的运动模糊图像盲复原[J]. 光学精密工程, 2013, 21(5):1 340-1 348.
|
|
WANG Guodong, XU Jie, PAN Zhenkuan, et al. Blind image restoration based on normalized hyper laplacian prior term[J]. Optics and Precision Engineering, 2013, 21(5):1 340-1 348.
|
[15] |
LIM S, KIM W. DSLR: deep stacked Laplacian restorer for low-light image enhancement[J]. IEEE Transactions on Multimedia, 2020, 23:4 272-4 284.
|
[16] |
冯晓硕, 沈樾, 王冬琦. 基于图像的数据增强方法发展现状综述[J]. 计算机科学与应用, 2021, 11(2):370-382.
|
|
FENG Xiaoshuo, SHEN Yue, WANG Dongqi. A survey on the development of image data augmentation[J]. Computer Science and Application, 2021, 11(2):370-382.
|
[17] |
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 1-48.
|
[18] |
CHANDRIAH K K, NARAGANAHALLI R V. RNN/LSTM with modified adam optimizer in deep learning approach for automobile spare parts demand forecasting[J]. Multimedia Tools and Applications, 2021, 80(17): 26 145-26 159.
|
[19] |
COOK J, RAMADAS V. When to consult precision-recall curves[J]. The Stata Journal, 2020, 20(1):131-148.
|
[20] |
张超. PR曲线与模型评估问题研究[J]. 现代信息科技, 2020, 4(4): 23-24.
|
|
ZHANG Chao. Research on P-R curve and model evaluation[J]. Modern Information Technology, 2020, 4(4): 23-24.
|