中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (12): 154-163.doi: 10.16265/j.cnki.issn1003-3033.2025.12.0676

• 安全工程技术 • 上一篇    下一篇

地下高压大口径输气管道泄漏扩散时序预测模型

韩子齐1(), 徐童1,2,**(), 蔡继涛1, 张思琪1, 张力1   

  1. 1 中国矿业大学(北京) 应急管理与安全工程学院, 北京 100083
    2 中国矿业大学 煤矿瓦斯与火灾防治教育部重点实验室, 江苏 徐州 221116
  • 收稿日期:2025-07-12 修回日期:2025-10-21 出版日期:2025-12-27
  • 通信作者:
    ** 徐童(1995—),男,河北邯郸人,博士,讲师,主要从事城市消防工程技术方面的研究。E-mail:
  • 作者简介:

    韩子齐 (2001—),男,河北沧州人,硕士研究生,研究方向为油气管道安全、AI数据驱动模型。E-mail:

  • 基金资助:
    国家重点研发计划项目(2023YFC3011300); 中央高校基本科研业务费专项资金资助(2024-11044)

Time-series prediction model for leakage dispersion of buried high-pressure large-diameter gas pipelines

HAN Ziqi1(), XU Tong1,2,**(), CAI Jitao1, ZHANG Siqi1, ZHANG Li1   

  1. 1 School of Emergency Management and Safety Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
    2 Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education, Xuzhou Jiangsu 221116, China
  • Received:2025-07-12 Revised:2025-10-21 Published:2025-12-27

摘要:

为解决地下高压大口径输气管道泄漏后泄漏区域空间浓度信息不明、事故未来态势不清等问题,融合机器学习降维与时序预测方法,构建高压大口径输气管道泄漏扩散预测模型。首先,基于计算流体动力学方法,构建多工况输气管道泄漏扩散浓度场数据集;其次,利用该数据集分别对预测模型中降维模块与时序预测模块进行超参数优化及训练;最后,基于独立测试集,评估高压大口径输气管道泄漏扩散预测模型预测精度,并分析不同预测时长下预测模型误差。结果表明:预测模型在测试集上平均绝对误差为0.000 5,平均绝对百分比误差为6.82%,且平均绝对百分比误差在多种预测时间步长下均低于14%。

关键词: 高压大口径输气管道, 天然气, 泄漏扩散, 时序预测, 降维模型

Abstract:

In order to address the challenges of unclear spatial concentration distribution and uncertain future evolution in high-pressure large-diameter gas pipeline leakage scenarios, a predictive model for gas leakage dispersion was proposed by integrating machine learning-based dimensionality reduction and time series forecasting methods. Firstly, a multi-condition dataset of gas leakage concentration fields was generated using computational fluid dynamics simulations. Subsequently, the dimensionality reduction module and time series forecasting module of the predictive model were separately optimized and trained using this dataset. Finally, the model's predictive accuracy was evaluated on an independent test set, and the prediction errors under various forecast horizons were analyzed. The results show that the model achieves a mean absolute error of 0.000 5 and a mean absolute percentage error (mAPE) of 6.82% on the test set, with the mAPE remaining below 14% across different prediction time steps.

Key words: high-pressure large-diameter gas pipeline, natural gas, leakage and dispersion, temporal prediction, reduction model

中图分类号: