| [1] |
彭善碧, 罗雪. 埋地掺氢天然气管道泄漏扩散数值模拟研究[J]. 中国安全科学学报, 2024, 34(3): 63-69.
doi: 10.16265/j.cnki.issn1003-3033.2024.03.1904
|
|
PENG Shanbi, LUO Xue. Numerical simulation of leakage and diffusion in buried hydrogen-blended natural gas pipeline[J]. China Safety Science Journal, 2024, 34(3): 63-69.
doi: 10.16265/j.cnki.issn1003-3033.2024.03.1904
|
| [2] |
李云涛, 张振永, 刘玉卿, 等. 天然气管道全管径断裂事故影响范围研究[J]. 中国安全科学学报, 2020, 30(9): 149-154.
|
|
LI Yuntao, ZHANG Zhenyong, LIU Yuqing, et al. Influence range of full bore rupture accidents of natural gas pipelines[J]. China Safety Science Journal, 2020, 30(9): 149-154.
|
| [3] |
YAN Yuting, DONG Xiaoqiang, LI Junming. Experimental study of methane diffusion in soil for an underground gas pipe leak[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 82-89.
doi: 10.1016/j.jngse.2015.08.039
|
| [4] |
BONNAUD C, CLUZEL V, CORCOLES P, et al. Experimental study and modelling of the consequences of small leaks on buried transmission gas pipeline[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 303-312.
doi: 10.1016/j.jlp.2018.06.010
|
| [5] |
WANG Xuemei, TAN Yufei, ZHANG Tiantian, et al. Numerical study on the diffusion process of pinhole leakage of natural gas from underground pipelines to the soil[J]. Journal of Natural Gas Science and Engineering, 2021, 87:DOI: 10.1016/j.jngse.2020.103792.
|
| [6] |
BU Fanxi, LIU Yang, LIU Yongbin, et al. Leakage diffusion characteristics and harmful boundary analysis of buried natural gas pipeline under multiple working conditions[J]. Journal of Natural Gas Science and Engineering, 2021, 94:DOI: 10.1016/j.jngse.2021.104047.
|
| [7] |
王岩, 黄弘, 黄丽达, 等. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报:自然科学版, 2017, 57(3): 274-280.
|
|
WANG Yan, HUANG Hong, HUANG Lida, et al. Numerical simulations of leakage gas dispersion based on soil and atmosphere coupling[J]. Journal of Tsinghua University: Science and Technology, 2017, 57(3): 274-280.
|
| [8] |
程凡, 付明, 李垣志, 等. 土壤地下空间耦合下天然气泄漏扩散数值模拟[J]. 科学技术与工程, 2023, 23 (22): 9746-9753.
|
|
CHENG Fan, FU Ming, LI Yuanzhi, et al. Numerical simulation of natural gas leakage and diffusion in soil and underground space coupling[J]. Science Technology and Engineering, 2023, 23 (22): 9746-9753.
|
| [9] |
王向阳, 杜美萍, 汪彤, 等. 埋地燃气管道泄漏扩散过程数值模拟[J]. 中国安全科学学报, 2018, 28 (2): 45-50.
|
|
WANG Xiangyang, DU Meiping, WANG Tong et al. Numerical simulation of leakage of gas from buried pipeline and its diffusion process[J]. China Safety Science Journal, 2018, 28 (02): 45-50.
|
| [10] |
何沫, 唐雨, 李懿, 等. 含硫输气管道泄漏扩散多气团叠加计算模型[J]. 中国安全科学学报, 2016, 26(5): 118-123.
|
|
HE Mo, TANG Yu, LI Yi, et al. Multiple-puff superposition calculation model for release and dispersion of sour gas form pipeline[J]. China Safety Science Journal, 2016, 26(5): 118-123.
|
| [11] |
WANG Binbin, CHEN Liqiong, LIN Wanxin, et al. Research on gas diffusion of natural gas leakage based on Gaussian plume model[J]. Arabian Journal of Geosciences, 2022, 15:DOI: 10.1007/s12517-022-09922-6.
|
| [12] |
PADULA G, GIRFOGLIO M, ROZZA G. A brief review of reduced order models using intrusive and non-intrusive techniques[J]. Proceedings in Applied Mathematics and Mechanics, 2024, 24:DOI: 10.1002/pamm.202400210.
|
| [13] |
HASEGAWA K, FUKAMI K, MURATA T, et al. Data-driven reduced order modeling of flows around two-dimensional bluff bodies of various shapes[C]. Fluids Engineering Division Summer Meeting, 2019:DOI: 10.1016/j.ijheatfluidflow.2021.108816.
|
| [14] |
GEELEN R, WRIGHT S, WILLCOX K. Operator inference for non-intrusive model reduction with quadratic manifolds[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403:DOI: 10.1016/j.cma.2022.11571.
|
| [15] |
EIVAZI H, GUASTONI L, SCHLATTER P, et al. Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence[J]. International Journal of Heat and Fluid Flow, 2021, 90:DOI: 10.1016/j.ijheatfluidflow.2021.108816.
|
| [16] |
HE Xu, KONG Depeng, YU Xirui, et al. Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks[J]. International Journal of Hydrogen Energy, 2024, 51: 702-712.
doi: 10.1016/j.ijhydene.2022.12.102
|
| [17] |
HE Xu, KONG Depeng, YANG Guodong, et al. Hybrid neural network-based surrogate model for fast prediction of hydrogen leak consequences in hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2024, 59: 187-198.
doi: 10.1016/j.ijhydene.2024.01.328
|
| [18] |
RAJ N A, TAFTI D, MURALIDHAR N. Comparison of reduced order models based on dynamic mode decomposition and deep learning for predicting chaotic flow in a random arrangement of cylinders[J]. Physics of Fluids, 2023, 35:DOI: 10.1063/5.0153186.
|
| [19] |
SOLERA-RICO A, SANMIGUEL C, GÓMEZ-LÓPEZ M, et al. β -Variational autoencoders and transformers for reduced-order modelling of fluid flows[J]. Nature Communications, 2024, 15:DOI: 10.1038/s41467-024-45578-4.
|
| [20] |
GB 50494—2009, 城镇燃气技术规范[S].
|
|
GB 50494-2009, Technical code for city gas[S].
|
| [21] |
PETERSON E W, HENNESSEY J P. On the use of power laws for estimates of wind power potential[J]. Journal of Applied Meteorology and Climatology, 1978, 17(3): 390-394.
|
| [22] |
SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & fluids, 1995, 24(3): 227-238.
doi: 10.1016/0045-7930(94)00032-T
|
| [23] |
OLIVEIRA P J, ISSA R I. An improved PISO algorithm for the computation of buoyancy-driven flows[J]. Numerical Heat Transfer, Part B: Fundamentals, 2001, 40(6): 473-493.
|
| [24] |
EIVAZI H, VEISI H, NADERI M H, et al. Deep neural networks for nonlinear model order reduction of unsteady flows[J]. Physics of Fluids, 2020, 32:DOI: 10.1063/5.0020526.
|
| [25] |
EIVAZI H, LE-CLAINCHE S, HOYAS S, et al. Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows[J]. Expert Systems with Applications, 2022, 202:DOI: 10.1016/j.eswa.2022.117038.
|
| [26] |
KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. arXiv Preprint arXiv, 2013:DOI:10.48550/arXiv.1312.6114.
|
| [27] |
WU Haixu, HU Tengge, LIU Yong, et al. Timesnet: temporal 2d-variation modeling for general time series analysis[J]. arXiv Preprint arXiv, 2022:DOI:10.48550/arXiv.2210.02186.
|