中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (12): 88-95.doi: 10.16265/j.cnki.issn1003-3033.2025.12.1597

• 安全工程技术 • 上一篇    下一篇

基于改进MSET的飞机空调系统基线建模方法

韩雁飞1,2(), 吴镛正2, 钟伦珑2, 白子璇2, 甘力中3, 吴仁彪2,**()   

  1. 1 中国民航大学 安全科学与工程学院, 天津 300300
    2 中国民航大学 天津市智能信号与图像处理重点实验室, 天津 300300
    3 北京飞机维修工程有限公司 工程部, 北京 100621
  • 收稿日期:2025-06-10 修回日期:2025-09-28 出版日期:2025-12-27
  • 通信作者:
    ** 吴仁彪(1966—),男,湖北武汉人,博士,教授,主要从事民航卫星导航应用干扰影响评估与定位、卫星导航系统抗干扰、无人机安全管控、民航智能安保、航空运输大数据及人工智能等方面的研究。E-mail:
  • 作者简介:

    韩雁飞 (1987—),女,新疆乌鲁木齐人,博士研究生,讲师,主要从事航空运输大数据与人工智能、雷达信号处理等方面的研究。E-mail:

    钟伦珑 教授

    甘力中 高级工程师

  • 基金资助:
    国家自然科学基金委员会-中国民用航空局民航联合研究基金资助(U2133204); 中国民航大学天津市智能信号与图像处理重点实验室开放基金资助(2025ASP-TJ02)

Baseline modeling method for aircraft air conditioning system based on improved MSET

HAN Yanfei1,2(), WU Yongzheng2, ZHONG Lunlong2, BAI Zixuan2, GAN Lizhong3, WU Renbiao2,**()   

  1. 1 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
    2 Tianjin Key Laboratory of Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China
    3 Engineering Division, Aircraft Maintenance and Engineering Corporation Beijing, Beijing 100621, China
  • Received:2025-06-10 Revised:2025-09-28 Published:2025-12-27

摘要:

为有效监控飞机空调系统核心部件的潜在性能衰退,提出一种基于改进多元状态估计(MSET)的飞机空调系统基线建模方法。首先,选取关键部件的快速存取记录器(QAR)数据作为特征参数;其次,以健康的历史数据作为训练样本,利用密度峰聚类算法分别筛选非低温数据集和低温数据集的状态数据,并构造记忆矩阵;然后,将自适应对角加载技术应用于MSET过程,降低由于记忆矩阵病态引起的异常波动影响;最后,建立多特征变量与系统运行状态之间的性能基线,并利用空客A320机型实测飞行数据进行检测分析。结果表明:文中所提方法可同时建立初级热交换器、主级热交换器和空气循环机等多个关键部件的性能基线,能在部件失效前有效地检测出存在性能衰退的飞行循环,检测结果较为准确,能够为航空公司的基于状态的维修与健康管理提供参考。

关键词: 飞机空调系统, 基线建模, 多元状态估计(MSET), 性能衰退, 快速存取记录器(QAR)

Abstract:

In order to effectively monitor the potential performance degradation of core components in aircraft air conditioning systems, a baseline modeling method for aircraft air conditioning systems based on modified MSET was proposed in this paper. Firstly, QAR data of key components was selected as the feature parameter. Secondly, using healthy historical data as training sample, the density peak clustering method was used to screen state data and construct memory matrices for both non-low-temperature and low-temperature datasets. Then, the adaptive diagonal loading technique was applied to MSET process to reduce the abnormal fluctuations caused by the pathological state of the memory matrix. Finally, a performance baseline was established between the multivariate feature variables and the system operating state, and real flight data from Airbus A320 aircrafts was used to analysis. Results show that the proposed method can simultaneously establish performance baselines for multiple key components such as primary heat exchanger, main heat exchanger and air cycle machine. It can effectively detect flight cycles with performance degradation before component failure, and the detection results are relatively accurate, providing a reference standard for airlines' condition based on maintenance and health management.

Key words: aircraft air conditioning system, baseline modeling, multivariate state estimation technology (MSET), performance degradation, quick access recorder (QAR)

中图分类号: