中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 239-245.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0036

• 研究论文 • 上一篇    下一篇

强电磁扰动环境变电站无人机自主高精巡检研究

邹彪(), 朱晓康**(), 任伟达, 高煜博, 方腾   

  1. 国网电力空间技术有限公司 特种作业中心, 北京 102209
  • 收稿日期:2025-02-20 修回日期:2025-04-22 出版日期:2025-09-03
  • 通信作者:
    ** 朱晓康(1993—),男,河南荥阳人,硕士,工程师,主要从事无人机电力应用、无人机在变电站(换流站)的数智化应用工作。E-mail:
  • 作者简介:

    邹彪 (1990—),男,湖南衡阳人,硕士,高级工程师,主要从事电网智能巡视技术方面的工作。E-mail:

  • 基金资助:
    项目基金:国家电网有限公司总部管理科技项目(5500-202304542A-3-2-ZN)

Research on autonomous high-precision inspection of substations by unmanned aerial vehicles in strong electromagnetic interference environments

ZOU Biao(), ZHU Xiaokang**(), REN Weida, GAO Yubo, FANG Teng   

  1. Specialized Operations Center, State Grid Electric Power Space Technology Company Limited, Beijing 102209, China
  • Received:2025-02-20 Revised:2025-04-22 Published:2025-09-03

摘要: 为解决变电站复杂结构和强电磁干扰对无人机巡检产生的定位、建图及路径规划难题,提出一种基于因子图优化的多传感器融合定位与多层次轨迹规划的无人机自主高精巡检方法。在定位层面,利用因子图优化框架将激光里程计、惯性单元(IMU)预积分、全球导航卫星系统(GNSS)/实时动态测量(RTK)及回环检测深度耦合,形成具备稳定抗干扰能力与高精度特性的多传感器同步定位与地图构建(SLAM)系统;在规划层面,通过最小急动度多项式生成平滑全局航线,并引入基样条对轨迹进行细化与调整,并在系统中融合实时避障和动力学可行性约束。结果表明:该方法在室内与户外不同电压等级的变电站环境中均能保持厘米级定位精度与低地图配准误差;相比于单一传感器或常规卫星导航方案,该方法在稳定性、飞行效率和鲁棒性方面均有显著提升;因子图优化驱动的多传感器深度融合与多层次轨迹规划相结合,可为强电磁干扰场景中无人机的自主巡检提供兼具高精度和高鲁棒性的全新路径。

关键词: 强电磁干扰, 变电站, 因子图优化, 无人机, 巡检

Abstract:

In response to the challenges of positioning, mapping, and path planning for UAV inspections caused by the complex structures and strong electromagnetic interferences in substations, an autonomous UAV inspection method based on factor graph optimization for multi-sensor fusion positioning and multi-level trajectory planning was innovatively proposed. At the positioning level, the factor graph optimization framework was utilized to deeply couple laser odometry, inertial measurement unit (IMU) pre-integration, global navigation satellite system (GNSS)/real-time kinematic (RTK) observations, and loop detection, forming a multi-sensor simultaneous localization and mapping (SLAM) system with stable anti-interference capabilities and high precision characteristics. At the planning level, after generating a smooth global flight path using the minimum snap polynomial, cardinal splines were introduced to refine and adjust the trajectory, and real-time obstacle avoidance and dynamic feasibility constraints were integrated into the system. The results show that this method can maintain centimeter-level positioning accuracy and low map registration error in indoor and outdoor substation environments of different voltage levels, and it significantly improves stability, flight efficiency, and robustness compared to single-sensor or conventional satellite navigation solutions. The study indicates that the combination of factor graph optimization-driven multi-sensor deep fusion and multi-level trajectory planning provides a new path for autonomous UAV inspection in strong electromagnetic interference scenarios, with both high precision and high robustness.

Key words: strong electromagnetic interference, substation, factor graph optimization, unmanned aerial vehicle (UAV), inspection

中图分类号: