中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S2): 58-65.doi: 10.16265/j.cnki.issn1003-3033.2025.S2.0007

• 安全工程技术 • 上一篇    下一篇

土压盾构施工顺序和土仓压力对铁路路基的沉降影响

吕计瑞1(), 崔明2, 蔡清池3, 赵原野2, 李庆文4,**()   

  1. 1 中交隧道工程局有限公司 项目部, 北京 100024
    2 中交一公局集团有限公司 技术中心, 北京 100024
    3 宁德师范学院 机电工程学院, 福建 宁德 352100
    4 北京科技大学 资源与安全工程学院, 北京 100083
  • 收稿日期:2025-06-10 出版日期:2026-02-04
  • 通信作者:
    **李庆文(1986—),男,辽宁朝阳人,博士,教授,主要从事岩土工程安全与稳定性控制相关研究。E-mail:
  • 作者简介:

    吕计瑞 (1987—),男,河北衡水人,本科,高级工程师,主要从事地下工程和盾构隧道施工技术管理工作。E-mail:

    崔明 教授级高级工程师

    蔡清池 讲师

    赵原野 高级工程师

    李庆文 教授

  • 基金资助:
    国家重点研发计划(2017YFC0805305); 云南省重点研发计划(202403AA080022)

Influence of EPB construction sequence and soil chamber pressure on railway subgrade settlement

LYU Jirui1(), CUI Ming2, CAI Qingchi3, ZHAO Yuanye2, LI Qingwen4,**()   

  1. 1 Project Department, CCCC Tunnel Engineering Company Limited, Beijing 100024, China
    2 Technology Center, China First Highway Engineering Group Co., Ltd., Beijing 100024, China
    3 College of Mechanical and Electrical Engineering, Ningde Normal University, Ningde Fujian 352100, China
    4 School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2025-06-10 Published:2026-02-04

摘要:

为研究盾构下穿铁路路基过程中施工顺序和土仓压力的耦合影响及路基微变形控制,以哈尔滨轨道交通3号线土压平衡盾构(EPB)下穿哈牡高铁等多股铁路为背景,采用数值模拟、理论计算和现场实测等方法,研究双线隧道不同施工顺序及土仓压力设置对地层变形的影响。数值结果表明:当相向2台EPB在铁路路基正下方交汇时,较在两侧相遇沉降量增加0.4 mm,增幅达12.86%;土仓压力设置为220、200和180 kPa时,最大沉降分别为3.50、5.14和7.92 mm;现场掘进参数相关性分析发现螺旋输送机转速和推进速度的比速与土仓压力呈负相关,皮尔逊相关系数为-0.49,该地层比速宜控制在90.98 r/m,土仓压力波动范围为-20~25 kPa。采用朗肯静止土压力加20 kPa储备压力(抵消压力波动)作为土仓压力计算值,控制比速值后的实测值(196~227 kPa)与公式计算值(180~222 kPa)吻合良好;采用隧道监测预警平台实时监测沉降速率和累计沉降并及时反馈调整,最终铁路路基沉降控制在3.41 mm,满足不超过6 mm的安全要求。

关键词: 施工顺序, 土仓压力, 路基沉降, 数值模拟, 比速, 微变形控制

Abstract:

To research the coupling effect of construction sequence and soil chamber pressure, as well as the subgrade micro-deformation control during the process of shield tunneling under railway subgrades, the earth pressure balance (EPB) shield of Harbin Rail Transit Line 3 passing under multiple railway tracks, including the Harbin-Mudanjiang High-Speed Railway, was taken as the background. Methods such as numerical simulation, theoretical calculation, and on-site measurement were adopted to investigate the influence of different construction sequences of double-line tunnels and soil chamber pressure settings on stratum deformation. The numerical results show that when two EPB shields advancing towards each other meet directly below the railway subgrade, the settlement increases by 0.4 mm compared with meeting on both sides, with an increase rate of 12.86%. When the soil chamber pressure is set to 220, 200, and 180 kPa, the maximum settlements are 3.50, 5.14, and 7.92 mm, respectively. The correlation analysis of on-site tunneling parameters reveals that the ratio of screw conveyor rotating speed to tunneling speed is negatively correlated with soil chamber pressure, with a Pearson correlation coefficient of -0.49. The specific speed value of this stratum should be controlled at 90.98 r/m, and the fluctuation of soil chamber pressure should range from -20 kPa to 25 kPa. When the Rankine earth pressure at rest plus a 20 kPa reserve pressure (to offset pressure fluctuations) is used as the calculated value of soil chamber pressure, the measured values (196-227 kPa) after controlling the specific speed value are in good agreement with the formula-calculated values (180-222 kPa). By using the tunnel monitoring and early warning platform to monitor the settlement rate and cumulative settlement in real time, and adjust in time based on feedback, the final settlement of the railway subgrade is controlled at 3.41 mm, which meets the safety requirement of not exceeding 6 mm.

Key words: construction sequence, soil chamber pressure, subgrade settlement, numerical simulation, specific speed, micro-deformation control

中图分类号: