中国安全科学学报 ›› 2026, Vol. 36 ›› Issue (1): 121-129.doi: 10.16265/j.cnki.issn1003-3033.2026.01.0931

• 安全技术与工程 • 上一篇    下一篇

掘进巷道瓦斯/氨气/空气混合物的爆炸特性研究

李胜男1,2(), 于鼎淇1, 高科1,2,**()   

  1. 1 辽宁工程技术大学 安全科学与工程学院,辽宁 葫芦岛 125105
    2 辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室,辽宁 葫芦岛 125105
  • 收稿日期:2025-09-20 修回日期:2025-11-24 出版日期:2026-01-28
  • 通信作者:
    ** 高科(1983—),男,山东莱芜人,博士,教授,主要从事矿井热动力灾害防治等方面的研究。E-mail:
  • 作者简介:

    李胜男 (1996—),女,辽宁铁岭人,博士,副教授,主要从事矿井爆炸、矿井通风等方面的研究。E-mail:

  • 基金资助:
    辽宁省科学技术厅项目(2025-BS-0391); 辽宁省科学技术厅项目(2025-BS-0401); 国家自然科学基金(52274205); 国家自然科学基金(52474225)

Study on explosion characteristics of mixture of methane/ammonia/air in tunneling roadways

LI Shengnan1,2(), YU Dingqi1, GAO Ke1,2,**()   

  1. 1 College of Safety Science and Engineering, Liaoning Technical University, Huludao Liaoning 125105, China
    2 Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Huludao Liaoning 125105, China
  • Received:2025-09-20 Revised:2025-11-24 Published:2026-01-28

摘要:

为探究掘进巷道内掺氨对瓦斯爆炸传播特性的影响特征,从爆炸压力动力学与火焰传播机制2方面,系统研究不同掺氨比、初始压力及初始温度条件下瓦斯/氨气/空气混合物的爆炸行为;通过改变掺氨比例、初始压力与初始温度等关键参数,对比分析混合气体的爆炸超压演变过程与火焰传播特性。结果表明:氨气掺入对混合气体爆炸行为呈现先抑制后促进的作用,爆炸超压随掺氨比增大先降低后升高;火焰锋面位置与传播速度则随掺氨比增加而逐渐增大。在初始压力影响方面,爆炸超压峰值、火焰传播速度及火焰位置均随初始压力升高呈线性增长趋势。不同于初始压力的单一影响,初始温度对爆炸特性的影响较为复杂:在300~700 K范围内,爆炸超压随温度升高而增大,火焰传播轨迹与温度呈显著正相关;而当温度升至900 K时,火焰传播受到明显抑制,火焰锋面位置与速度均显著降低。掺氨比对瓦斯爆炸过程具有非单调影响,初始压力与温度分别以线性与非线性方式调控爆炸强度与火焰传播行为。

关键词: 掘进巷道, 瓦斯/氨气/空气混合物, 爆炸特性, 掺氨比, 火焰传播, 爆炸压力

Abstract:

To investigate the influence of ammonia admixture on methane explosion propagation characteristics in tunneling tunnels, the explosive behavior of methane/ammonia/air mixtures was systematically examined under varying ammonia blending ratios, initial pressures, and initial temperatures. The explosion overpressure evolution and flame propagation characteristics of the mixtures under varying ammonia blending ratios, initial pressures, and initial temperatures. Results indicate that the incorporation of ammonia exhibits a dual effect on the explosion behavior: initial suppression followed by enhancement. The explosion overpressure is observed to decrease first and then increase with rising ammonia content, while the flame front position and propagation velocity progressively increase with higher ammonia ratios. Regarding the influence of initial pressure, the peak explosion overpressure, flame propagation velocity, and flame position all show linear increasing trends with elevated initial pressure. The influence of initial temperature on explosion characteristics is more complex. Within the range of 300-700 K, the explosion overpressure increases with temperature, and the flame propagation trajectory show a significant positive correlation with temperature. However, when the temperature reaches 900 K, flame propagation is markedly suppressed and manifested by significant decreases in both the flame front position and velocity. The study reveals that the ammonia blending ratio exerts a non-monotonic influence on the methane explosion process, while initial pressure and temperature regulate explosion intensity and flame propagation behavior in linear and nonlinear ways, respectively.

Key words: tunneling roadway, methane/ammonia/air mixture, explosion characteristics, ammonia blending ratio, flame propagation, explosion pressure

中图分类号: