中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (7): 173-180.doi: 10.16265/j.cnki.issn1003-3033.2023.07.0759

• 公共安全 • 上一篇    下一篇

城市易涝区房屋结构安全集成预警模型

段在鹏1,2(), 李帆3, 郭进3, 李炯3   

  1. 1 福州大学 经济与管理学院,福建 福州 350108
    2 福建省应急管理研究中心,福建 福州 350024
    3 福州大学 环境与安全工程学院,福建 福州 350108
  • 收稿日期:2023-02-15 修回日期:2023-05-11 出版日期:2023-07-28
  • 作者简介:

    段在鹏 (1985—),男,山东潍坊人,博士,副教授,硕士生导师,主要从事安全预警系统、安全复杂系统分析等方面的教学与研究工作。E-mail:

    郭进,教授

  • 基金资助:
    国家社会科学基金(17CGL049); 福建省社会科学基金(FJ2022B052)

Integrated warning model for structural safety of buildings in urban waterlogged area

DUAN Zaipeng1,2(), LI Fan3, GUO Jin3, LI Jiong3   

  1. 1 School of Economics and Management, Fuzhou University, Fuzhou Fujian 350108, China
    2 Fujian Emergency Management Research Center, Fuzhou Fujian 350024, China
    3 School of Environment & Safety Engineering, Fuzhou University, Fuzhou Fujian 350108, China
  • Received:2023-02-15 Revised:2023-05-11 Published:2023-07-28

摘要:

为挖掘影响城市易涝区房屋结构安全的重要因素,首先收集和选取房屋年份、楼层、面积等21个属性,构建预警指标体系,采用过采样、独热编码等方法解决样本离散化、不均衡问题;其次,采用4种不同的集成算法,使用6种机器学习模型,构建预警模型,学习并测试房屋结构安全数据;然后,综合应用准确率、查准率和召回率的调和平均、平均精确率、曲线下的面积(AUC)等指标,综合比较预警模型性能,并对各预警指标进行相关性分析与重要度排序;最后,以福建省11个县市35个易涝区的2 215栋房屋为例,验证所构建的模型的科学性和有效性。结果表明:是否属于重点排查房屋、施工团队是否专业、房屋面积、年份、地上层数的特征重要度均在150以上,是构建易涝区房屋结构安全预警最重要的5个指标。基于提升法策略构建的预警模型的预警精度最优,总体预测准确率为99.10%,该模型能够更为准确高效地检测易涝区房屋的结构安全。

关键词: 易涝区, 房屋结构安全, 集成算法, 机器学习, 预警模型

Abstract:

In order to explore the important factors affecting the structural safety of houses in urban waterlogged areas, 21 attributes, such as house year, floor and area, were collected and selected to construct an early warning index system, and the discretization and imbalance of samples were solved by over-sampling and unique heat coding. Secondly, four different integrated algorithms and six machine learning models were used to build an early warning model to learn and test the safety data of housing structures. Then, the performance of the early warning model was compared comprehensively by applying the harmonic average of accuracy, accuracy and recall, average accuracy and area under the curve (AUC), and the correlation analysis and importance ranking of each warning index were carried out. Finally, 2 215 houses in 35 waterlogging areas in 11 counties and cities of Fujian Province were taken as examples to verify the scientific and validity of the model. The results show that: whether the house belongs to the key inspection, whether the construction team is professional, house area, year and the number of the ground floor are all more than 150, which are the most important five indicators for building safety warnings in vulnerable waterlogging areas. The early-warning model based on the lifting method strategy has the best early-warning accuracy, and the overall prediction accuracy is 99.10%. The model can detect the structural safety of houses in vulnerable waterlogging areas more accurately and efficiently.

Key words: vulnerable to waterlogging, building structure safety, integrated algorithm, machine learning, early warning model