中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (12): 74-83.doi: 10.16265/j.cnki.issn1003-3033.2024.12.0497

• 安全工程技术 • 上一篇    下一篇

基于改进Transformer模型的四维航迹预测

刘宏1(), 张鑫迪1, 卢飞1, 张成裕2   

  1. 1 中国民航大学 空中交通管理学院,天津 300300
    2 北方自动控制技术研究所, 山西 太原 030006
  • 收稿日期:2024-09-11 修回日期:2024-11-08 出版日期:2024-12-28
  • 作者简介:

    刘 宏 (1985—),男,山西平遥人,博士,副教授,主要从事空中交通管理、智能交通优化、无人机空管安全运行等方面的研究。E-mail:

    卢飞, 副教授。

  • 基金资助:
    国家自然科学基金资助(52272356); 国家重点研发计划项目(2022YFB4300904); 国家空管委项目(ZKG2023-03); 中央高校基本业务费自然科学重点项目(3122022101)

Research on 4D flight trajectory prediction based on improved Transformer model

LIU Hong1(), ZHANG Xindi1, LU Fei1, ZHANG Chengyu2   

  1. 1 School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
    2 North Automatic Control Technology Institute, Taiyuan Shanxi 030006, China
  • Received:2024-09-11 Revised:2024-11-08 Published:2024-12-28

摘要:

针对现有的四维航迹预测未充分考虑序列航迹数据之间存在关联关系等问题,改进Transformer模型架构,完善四维航迹预测的编码和解码操作。首先,改进卷积模块,利用普通卷积捕捉相邻时序点的关联关系,通过扩张卷积捕捉邻近时序序列点之间的隐式相关性,从而覆盖更大的序列范围;其次,采用多头自注意力对航迹的时空间特征结合注意力分数的重要性进行调参计算,学习历史航迹数据的全局依赖关系;再次,通过引入概率稀疏方法,降低自注意力机制的计算复杂度,提高模型的计算效率;最后,搭建试验平台,预测对比航迹的经度、纬度和高度的时序特征。结果表明:改进Transformer模型与传统的Transformer模型等4种神经网络模型相比,时间性能提高14.4%;采用均方根误差(RMSE)和平均绝对误差(MAE)作为评价指标,改进Transformer模型对经度、纬度和高度等航迹特征预测的偏差的平均值分别为0.027和0.021;改进Transformer模型与传统Transformer模型的预测平均偏差0.099和0.084相比,分别减小0.072和0.063。对预测序列长度的敏感性分析得到,改进Transformer模型与基准模型相比,预测的稳定性更高。

关键词: 改进Transformer模型, 四维航迹, 航迹预测, 深度学习, 扩张卷积, 注意力机制

Abstract:

Flight trajectory prediction plays a crucial role in ensuring safe and efficient air traffic operation. In order to consider the implicit correlations between flight trajectory characteristics, the encoding and decoding operations of the prediction framework in the transformer model were enhanced. Firstly, the convolutional block was improved, and ordinary convolutions were applied to capture the correlations between neighboring time series trajectory characteristics, and dilated convolutions were added to capture correlations between non-neighboring time series trajectory characteristics. Secondly, multi-head self-attention was employed to perform calculation based on the spatiotemporal features of the flight trajectory combined with the importance of attention scores. Thirdly, probabilistic sparse method was designed to reduce the computational complexity of the multi-head self-attention and improve the model's computational efficiency. Finally, an experimental platform was established to verify the flight trajectory prediction framework. The results show that compared to the traditional transformer model and the other three neural network models, the improved transformer model shows a 14.4% improvement in time performance. By using root mean square error(RMSE) and mean absolute error(MAE) as evaluation metrics, the average prediction deviations of the improved transformer model for trajectory features such as longitude, latitude, and altitude are 0.027 and 0.021, respectively. These deviations are reduced by 0.072 and 0.063 compared to the traditional transformer model's average prediction deviations of 0.099 and 0.084. Sensitivity analysis on the lengths of prediction sequences indicates that the improved transformer model is more stable than the baseline models.

Key words: improved Transformer model, 4D flight trajectory, trajectory prediction, deep learning, dilated convolution, attention mechanism

中图分类号: