中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 76-84.doi: 10.16265/j.cnki.issn1003-3033.2025.04.1577

• 安全工程技术 • 上一篇    下一篇

下向进路采场内炮烟的扩散特征及通风参数确定

薛希龙 副教授1,2,3(), 李佳乐1, 武拴军 教授级高级工程师2,4, 张晓 讲师1,**(), 刘斌2, 张钦礼 教授3   

  1. 1 南华大学 资源环境与安全工程学院,湖南 衡阳 421200
    2 金川集团股份有限公司,甘肃 金昌 737100
    3 中南大学 资源与安全工程学院,湖南 长沙 410083
    4 金诚信矿业管理股份有限公司,北京 101500
  • 收稿日期:2024-12-04 修回日期:2025-02-11 出版日期:2025-04-28
  • 通信作者:
    **张 晓(1988—),女,湖南省益阳人,博士,讲师,主要从事矿山安全与固废处置方面的研究。E-mail:
  • 作者简介:

    薛希龙 (1985—),男,甘肃金昌人,博士,副教授,主要从事采矿技术、矿山充填与固废处置等方面研究。E-mail:

  • 基金资助:
    中国博士后基金资助(2021M693837); 国家重点实验室开放基金资助(GZSYS-KY-2020-013); 湖南省自然科学基金资助(2019JJ50516)

Diffusion characteristics of blasting fumes in downward drift stope and determination of ventilation parameters

XUE Xilong1,2,3(), LI Jiale1, WU Shuanjun2,4, ZHANG Xiao1,**(), LIU Bin2, ZHANG Qinli3   

  1. 1 Schoole of Resources Environment and Safety Engineering, University of South China, Hengyang Hunan 421200, China
    2 Jinchuan Group Co., Ltd., Jinchang Gansu 737100, China
    3 Central South University, School of Resources and Safety Engineering, Changsha Hunan 410083, China
    4 JCHX Mining Management Co., Ltd., Beijing 101500, China
  • Received:2024-12-04 Revised:2025-02-11 Published:2025-04-28

摘要:

为明确下向进路充填采矿法采场炮烟的扩散特征,以金川龙首矿下向进路充填采矿法为例,开展数值模拟和现场试验,研究进路和分层道内风流的空间分布,分析进路内CO和NO2的扩散特征,探讨通风井位置、进路长度对CO扩散的影响,并确定采场的通风参数。结果表明:分层道和进路内的风流场可划分为进风带、中性带和回流带,进路内风速呈底部高、中部低、顶部缓的S型分布;进路垂面上CO体积分数随高度增加而不断升高,进路水平方向上CO体积分数由里向外先降低后升高;进路腰线处CO扩散速度随通风时间呈现对数递减的趋势;NO2主要分布在进路腰线以下,其扩散速度快于CO;CO扩散速率与通风井距进路口的距离、进路的长度呈负相关;当通风井与进路口的距离≤40 m、进路长度≤55 m时,自然通风30 min炮烟中CO和NO2低于安全规程限值。

关键词: 下向进路采场, 采场炮烟, 数值模拟, 扩散特征, 通风井位置, 进路长度

Abstract:

To definite the diffusion characteristics of blasting fumes in downward drift filling mining stopes, taking the downhole filling mining method of Longshou Mine in Jinchuan as an example, numerical simulations and field tests were conducted. The spatial distribution of airflow in drifts and layered roads was studied,and the diffusion patterns of CO and NO2 in drifts were analyzed. Furthermore, the effects of ventilation shaft locations and drift lengths on CO diffusion were explored, and the ventilation parameters of the Longshou Mine were determined. The results indicated that the airflow field in drifts and layered drifts can be divided into the inflow zone, neutral zone, and return zone. The airflow velocity in the drift. shows the S-shaped distribution, with higher velocity at the bottom, lower in the middle, and moderate at the top. In the vertical cross-section of the drift, the CO volume fraction continuously increases with height. While horizontally, it exhibits a "decrease-then-increase" pattern from the inner to outer side. At the drift waistline, the CO diffusion velocity shows a logarithmic decreasing trend with ventilation time.NO2 is primarily concentrated below the midline of the drift, and its diffusion velocity is significantly faster than that of CO. The CO diffusion rate is negatively correlated with both the distance from the ventilation shaft to the drift entrance and drift length. When the distance between the ventilation shaft and the drift entrance is ≤40 m, and the drift length is ≤55 m, the CO and NO2 concentrations in the natural ventilation blasting fumes are below the standard limits below after 30 minutes.

Key words: downward drift stope, stope fumes, numerical simulation, diffusion characteristics, ventilation shaft locations, drift lengths

中图分类号: