[1] 冯夏庭,张传庆,陈炳瑞.岩爆孕育过程的动态调控[J].岩石力学与工程学报,2012,31(10): 1 983-1 997. FENG Xiating, ZHANG Chuanqing. CHEN Bingrui. Dynamical control of rockburst evolution process [J]. Chinese Journal of Rock Mechanics and Engineering, 2012,31(10): 1 983-1 997. [2] ADOKO A C,GOKCEOGLU C,WU L,et al. Knowledge-based and data-driven fuzzy modeling for rockburst prediction[J].International Journal of Rock Mechanics and Mining Sciences, 2013,61: 86-95. [3] 高娟,郭志勇,王巍.深埋隧道岩爆预测与声发射特征[J].西安科技大学学报,2011,31(1): 6-9. GAO Juan, GUO Zhiyong, WANG Wei. Rock burst prediction and acoustic emission characteristics of deep buried tunnels [J]. Journal of Xi'an University of Science and Technology, 2011,31(1): 6-9. [4] 杨进,武炜.地球物理方法在地质灾害勘查中的应用[J].物探与化探,2003,27(5): 333-337. YANG Jin, WU Wei. The application of geophysical prospecting techniques to geological hazard exploration[J]. Geophysical and Geochemical Exploration, 2003,27(5): 333-337. [5] 陈智强,张永兴,周检英.开挖诱发隧道围岩变形的红外热像试验研究[J].岩土工程学报,2012,34(7): 1 271-1 277. CHEN Zhiqiang, ZHANG Yongxing, ZHOU Jianying. Experimental study on infrared photographs of deformation and failure of surrounding rock of tunnels procession induced by excavation[J]. Chinese Journal of Geotechnical Engineering, 2012,34(7): 1 271-1 277. [6] 何学秋,窦林名.岩爆灾害电磁辐射监测理论与技术[C].第二届金属矿采矿科学技术前沿论坛论文集,2011:42-45,69. [7] 王元汉,李卧东,李启光.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5): 493-501. WANG Yuanhan, LI Wodong, LI Qiguang. Fuzzy mathematics comprehensive evaluation method for rock burst prediction[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(5): 493-501. [8] 陈海军,郦能惠,聂德新.岩爆预测的人工神经网络模型[J].岩土工程学报,2002,24(2): 229-232. CHEN Haijun, LI Nenghui, NIE Dexin. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002,24(2): 229-232. [9] 周科平,雷涛,胡建华.深部金属矿山RS-TOPSIS岩爆预测模型及其应用[J].岩石力学与工程学报,2013,32(增2): 3 706-3 710. ZHOU Kepin, LEI Tao, HU Jianhua. Rs-topsis model of rockburst prediction in deep metal mines and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(S2): 3 706-3 710. [10] 李 宁,王李管,贾明涛.基于粗糙集理论和支持向量机的岩爆预测[J].中南大学学报:自然科学版,2017,48(5): 1 268-1 275. LI Ning, WANG Liguan, JIA Mingtao. Rockburst prediction based on rough set theory and support vector machine[J]. Journal of Central South University:Science and Technology, 2017,48(5): 1 268-1 275. [11] 邵良杉,周玉.基于MIV-MA-KELM模型的岩爆烈度等级预测[J].中国安全科学学报,2018,28(2): 34-39. SHAO Liangshan, ZHOU Yu. MIV-MA-KELM model based prediction of rockburst intensity grade[J]. China Safety Science Journal, 2018,28(2): 34-39. [12] 张彪,戴兴国.基于指标距离与不确定度量的岩爆云模型预测研究[J].岩土力学,2017,38(增2): 257-265. ZHANG Biao, DAI Xingguo. A cloud model for predicting rockburst intensity grade based on index distance and uncertainty measure[J]. Rock and Soil Mechanics, 2017,38(S2): 257-265. [13] 董源,裴向军,张引.基于组合赋权-云模型理论的岩爆预测研究[J].地下空间与工程学报,2018,14(增1): 409-415. DONG Yuan, PEI Xiangjun, ZHANG Yin. Prediction of rock burst-based on combination weighting and cloud model theory[J]. Chinese Journal of Underground Space and Engineering, 2018,14(S1): 409-415. [14] 王迎超,靖洪文,张强.基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J].岩土力学,2015,36(4): 1 189-1 194. WANG Yingchao, JING Hongwen, ZHANG Qiang. Anormal cloud model-based study of grading prediction of rockburst intensity in deep underground engineering[J]. Rock and Soil Mechanics, 2015,36(4): 1 189-1 194. [15] 周科平,林允,胡建华.基于熵权—正态云模型的岩爆烈度分级预测研究[J].岩土力学,2016,37(增1): 596-602. ZHOU Keping, LIN Yun, HU Jianhua. Grading prediction of rockburst intensity based on entropy and normal cloud model[J]. Rock and Soil Mechanics, 2016,37(S1): 596-602. [16] 李绍红,王少阳,朱建东.基于权重融合和云模型的岩爆倾向性预测研究[J].岩土工程学报,2018,40(6): 1 075-1 083. LI Shaohong, WANG Shaoyang, ZHU Jiandong. Prediction of rock burst tendency based on weighted fusion and improved cloud model[J]. Chinese Journal of Geotechnical Engineering, 2018,40(6): 1 075-1 083. [17] 林冠强,莫天文,叶晓君.基于TOPSIS和CRITIC法的电网关键节点识别[J].高电压技术,2018,44(10): 3 383-3 389. LIN Guanqiang. MO Tianwen, YE Xiaojun.Critical node identification of power networks based on TOPSIS and CRITIC methods[J].High Voltage Engineering, 2018,44(10): 3 383-3 389. [18] 李德毅,杜鹢.不确定性人工智能[M].北京:国防工业出版社, 2005: 55-341. [19] 陈昊,李兵,刘常昱.一种无确定度的逆向云算法[J].小型微型计算机系统,2015,36(3): 544-549. CHEN Hao, LI Bing, LIU Changyu. An algorithm of backward cloud without certainty degree[J]. Journal of Chinese Computer Systems, 2015,36(3): 544-549. [20] 张春生,侯靖,朱永生.深埋隧洞围岩应力分布与破坏机理[J].现代隧道技术,2011,48(3): 7-13. ZHANG Chunsheng, HOU Jing, ZHU Yongsheng. Stress distribution and stress-induced failures in surrounding rock mass of deep tunnels[J]. Modern Tunnelling Technology, 2011,48(3): 7-13. [21] 唐礼忠,王文星.一种新的岩爆倾向性指标[J].岩石力学与工程学报,2002,21(6): 874-878. TANG Lizhong, WANG Wenxing. A new rock burst tendency index[J]. Chinese Journal of Rock Mechanics and Engineering, 2002,21(6): 874-878. [22] SINGH S P. Technical note: burst energy release index[J]. Rock Mechanics and Rock Engineering,1988,21(2): 149-155. [23] RUSSENES B R. Analysis of rock spelling for tunnels in steep valley sides(in Norwegian)[D]. Trondheim: Norwegian of Technology,1974. [24] BARTON N, LIEN R,LUNDE J. Engineering classification of rock masses for the design of tunnel support [J].Rock Mechanics,1974,6: 189-236. [25] HOEK E,BROWN E T. Underground excavation in rock[M]. London: Institute of Mining and Metallurgy,1980: 11-29. [26] 郭建强,赵青,王军保.基于弹性应变能岩爆倾向性评价方法研究[J].岩石力学与工程学报,2015,34(9): 1 886-1 893. GUO Jianqiang, ZHAO Qing, WANG Junbao. Rockburst prediction based on elastic strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(9): 1 886-1 893. [27] 过江,张为星,赵岩.岩爆预测的多维云模型综合评判方法[J].岩石力学与工程学报,2018,37(5): 1 199-1 206. GUO Jiang, ZHANG Weixing, ZHAO Yan. A multidimensional cloud model for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(5): 1 199-1 206. [28] 葛启发,冯夏庭.基于 Ada Boost组合学习方法的岩爆分类预测研究[J].岩土力学,2008,29(4): 943-948. GE Qifa, FENG Xiating. Classification and prediction of rockburst using Ada Boost combination learning method[J]. Rock and Soil Mechanics, 2008,29(4): 943-948. [29] 贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2): 343-348. JIA Yipeng, LYU Qing, SHANG Yuequan. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(2): 343-348. |