中国安全科学学报 ›› 2021, Vol. 31 ›› Issue (6): 99-105.doi: 10.16265/j.cnki.issn 1003-3033.2021.06.013

• 安全工程技术 • 上一篇    下一篇

基于Kurtogram与DSCN的滚动轴承故障诊断方法

古莹奎 教授, 刘平, 林忠海, 邱光琦   

  1. 江西理工大学 机电工程学院,江西 赣州 341000
  • 收稿日期:2021-03-04 修回日期:2021-05-07 出版日期:2021-06-28
  • 作者简介:古莹奎 (1976—),男,河南南阳人,博士,教授,主要从事可靠性与智能故障诊断方面的研究。E-mail: guyingkui@163.com。
  • 基金资助:
    国家自然科学基金资助(61963018); 江西省自然科学基金资助(20181BAB202020)。

Fault diagnosis method of rolling bearing based on Kurtogram and DSCN

GU Yingkui, LIU Ping, LIN Zhonghai, QIU Guangqi   

  1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2021-03-04 Revised:2021-05-07 Published:2021-06-28

摘要: 为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特征,自动提取优势特征并进行故障分类。结果表明:相对于其他故障诊断方法,提出的方法在测试集上的识别精确度较高,可达到97.28%;同时,DSCN在降低参数量及提高训练速度上具有明显优势。

关键词: 滚动轴承, Kurtogram, 深可分卷积神经网络(DSCN), 故障诊断, 混淆矩阵

Abstract: In order to reveal fault characteristics of different bearing and improve accuracy and efficiency of fault diagnosis, a bearing fault diagnosis method based on Kurtogram and DSCN was proposed. After Kurtogram was generated with original vibration signals, its graphic features under different fault modes were studied and recognized by DSCN, and advantageous features were automatically extracted for fault classification. The results show that compared with other fault diagnosis methods, the proposed one has the highest recognition accuracy on test set, reaching as far as 97.28%, which also reflects obvious advantages of DSCN in reducing number of parameters and increasing training speed.

Key words: rolling bearing, Kurtogram, depthwise separable convolutional network (DSCN), fault diagnosis, confusion matrix

中图分类号: