[1] 陈祥龙, 张兵志, 冯辅周, 等. 基于改进排列熵的滚动轴承故障特征提取[J]. 振动工程学报, 2018,31(5): 902-908. CHEN Xianglong, ZHANG Bingzhi, FENG Fuzhou, et al. Fault feature extraction of rolling bearings based on an improved permutation entropy [J]. Journal of Vobration Engineering, 2018,31(5): 902-908. [2] MOHAMMED O D, RANTATALO M, AIDANPAA J O. Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis [J]. Mechanical Systems and Signal Processing, 2015,54-55(3): 293-305. [3] GU Yingkui, ZHOU Xiaoqing, YU Dongping, et al. Fault diagnosis method of rolling bearing using principal component analysis and support vector machine [J]. Journal of Mechanical Science and Technology, 2018,32(11): 5 079-5 088. [4] 孟宗, 殷娜, 李晶. 基于信号稀疏表示和瞬态冲击信号多特征提取的滚动轴承故障诊断[J]. 计量学报, 2019,40(5): 855-8 601. MENG Zong, YIN Na, LI Jing. Fault diagnosis of rolling bearing based on sparse representation of signals and transient impulse signal multifeature extraction [J]. Acta Metrology Sinica, 2019,40(5): 855-8 601. [5] 隋文涛, 张丹, WANG Wilson. 基于EMD和MKD的滚动轴承故障诊断方法[J]. 振动与冲击, 2015,34(9): 55-59,64. SUI Wentao, ZHANG Dan, WANG Wilson. Fault diagnosis of rolling element bearings based on EMD and MKD [J]. Journal of Vibration and Shock, 2015,34(9):55-59,64. [6] 胡爱军, 赵军. 基于自适应最大相关峭度解卷积的滚动轴承多故障诊断[J]. 振动与冲击, 2019,38(22): 171-177. HU Aijun, ZHAO Jun. Diagnosis of multiple faults in rolling bearings based on adaptive maximum correlated kurtosis deconvolution [J]. Journal of Vibration and Shock, 2019,38(22): 171-177. [7] ANTONI J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007,21(1): 108-124. [8] ZHANG Yu, FAN Zhuoyou, GAO Xiaorong, et al. A fault diagnosis method of train wheelset rolling bearing combined with improved LMD and FK [J]. Journal of Sensors, 2019,18: 1-11. [9] HU Yue, BAO Wenjie, TU Xiaotong, et al. An adaptive spectral kurtosis method and its application to fault detection of rolling element bearings [J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(3): 739-750. [10] WANG Lei, LIU Zhiwen, CAO Hongrui, et al. Subband averaging kurtogram with dual-tree complex wavelet packet transform for rotating machinery fault diagnosis [J]. Mechanical Systems and Signal Processing, 2020,142:106755. [11] 孙文卿, 邓艾东, 邓敏强, 等. 基于随机森林和自编码的滚动轴承多视角特征融合[J]. 东南大学学报:英文版, 2019,35(3): 302-309. SUN Wenqing, DENG Aidong, DENG Minqiang, et al. Multi-view feature fusion for rolling bearing fault diagnosis using random forest and autoencoder [J]. Journal of Southeast University: English Edition, 2019,35(3): 302-309. [12] 古莹奎, 承姿辛, 朱繁泷. 基于主成分分析和支持向量机的滚动轴承故障特征融合分析[J]. 中国机械工程, 2015,26(20): 2 778-2 783. GU Yingkui, CHENG Zixin, ZHU Fanlong. Rolling bearing fault feature fusion based on PCA and SVM [J]. China Mechanical Engineering, 2015,26(20): 2 778-2 783. [13] ZHAO Zhuanzhe, XU Qingsong, JIA Minping. Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing fault diagnosis [J]. Neural Computing and Applications, 2016,27(2):375-385. [14] TANG Jiahui, WU Jimei, HU Bingbing, et al. A fault diagnosis method using Interval coded deep belief network [J]. Journal of Mechanical Science and Technology, 2020,34(5): 1 949-1 956. [15] ZHU Haiping, CHENG Jiaxin, ZHANG Cong, et al. Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings [J]. Applied Soft Computing, 2020,88:106060. [16] 佟瑞鹏, 崔鹏程. 基于深度学习的不安全因素识别和交互分析[J]. 中国安全科学学报, 2017,27(4): 49-54. TONG Ruipeng, CUI Pengcheng. Unsafe factor recognition and interactive analysis based on deep learning [J].China Safety Science Journal, 2017,27(4): 49-54. [17] LIU Han, ZHOU Jianzhong, XU Yanhe, et al. Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks [J]. Neurocomputing, 2018,315(13): 412-424. [18] 唐波, 陈慎慎. 基于深度卷积神经网络的轴承故障诊断方法[J]. 电子测量与仪器学报, 2020,34(3): 88-93. TANG Bo, CHEN Shenshen. Method of bearing fault diagnosis based on deep convolutional neural network [J]. Journal of Electronic Measurement and Instrumentation, 2020,34(3): 88-93. [19] GU Yingkui, ZENG Lei, QIU Guangqi. Bearing fault diagnosis with varying conditions using angular domain resampling technology, SDP and DCNN [J]. Measurement, 2020,156:107616. [20] 徐丹, 代勇, 纪军红. 基于卷积神经网络的驾驶人行为识别方法研究[J]. 中国安全科学学报, 2019, 29(10): 12-17. XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network[J].China Safety Science Journal, 2019,29(10): 12-17. [21] ANTONI J. The spectral kurtosis: a useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307. |