[1] |
于广明, 宋传旺, 潘永战, 等. 尾矿坝安全研究的国外新进展及我国的现状和发展态势[J]. 岩石力学与工程学报, 2014, 33(增1):3 238-3 248.
|
|
YU Guangming, SONG Chuanwang, PAN Yongzhan, et al. Review of new progress in tailing dam safety in foreign research and current state with development trend in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3 238-3 248.
|
[2] |
HUI Shiqiang, CHARLEBOIS L, SUN Colin. Real-time monitoring for structural health, public safety, and risk management of mine tailings dams[J]. Canadian Journal of Earth Sciences, 2018, 55(3): 221-229.
doi: 10.1139/cjes-2017-0186
|
[3] |
张家荣, 刘建林. 中国尾矿库溃坝与泄露事故统计及成因分析[J]. 中国钼业, 2019, 43(4): 10-14.
|
|
ZHANG Jiarong, LIU Jianlin. The statistics and causes of dam break and leakage in Chinese tailings pond[J]. China Molybdenum Industry, 2019, 43(4):10-14.
|
[4] |
曾纪涵, 章光, 吴浩, 等. 改进POT模型下尾矿坝综合预警值确定方法[J]. 中国安全科学学报, 2022, 32(5):134-139.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1699
|
|
ZENG Jihan, ZHANG Guang, WU Hao, et al. Determination method of comprehensive early-warning indexes for tailings dam based on improved POT model[J]. China Safety Science Journal, 2022, 32(5):134-139.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1699
|
[5] |
阳雨平, 黄丕森, 陈国国. 基于改进FIM-未确知测度的尾矿库风险评价模型及应用[J]. 安全与环境学报, 2021, 21(3):996-1 004.
|
|
YANG Yuping, HUANG Pisen, CHEN Guoguo. Safety evaluation of tailings pond based on FIM-optimization unascertained measure[J]. Journal of Safety and Environment, 2021, 21(3):996-1 004.
|
[6] |
张岳安, 周科平. 浸润线埋深对尾矿坝稳定性的指标满意度敏感性分析[J]. 中国安全科学学报, 2013, 23(10):93-99.
|
|
ZHANG Yuean, ZHOU Keping. Sensibility analysis of saturation line depth to tailings dam stability with index satisfaction degree[J]. China Safety Science Journal, 2013, 23(10):93-99.
|
[7] |
李小军, 梅国栋, 苏军, 等. 灰色理论模型在尾矿库浸润线监测预测的应用[J]. 中国矿业, 2021, 30(增1):130-133.
|
|
LI Xiaojun, MEI Guodong, SHU Jun, et al. Application of grey theory model in monitoring and prediction of tailings pond infiltration line[J]. China Mining Magazine, 2021, 30(S1):130-133.
|
[8] |
许同乐, 王营博, 孟祥川, 等. 改进的灰色神经网络预测方法[J]. 北京邮电大学学报, 2018, 41(6):52-57,64.
doi: 10.13190/j.jbupt.2018-072
|
|
XU Tongle, WANG Yingbo, MENG Xiangchuan, et al. Improved grey neural networks prediction method[J]. Journal of Beijing University of Posts and Telecommuncations, 2018, 41(6):52-57,64.
|
[9] |
戴健非, 杨鹏, 诸利一, 等. 集成PCA和LSTM神经网络的浸润线预测方法[J]. 中国安全科学学报, 2020, 30(3):94-101.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.015
|
|
DAI Jianfei, YANG Peng, ZHU Liyi, et al. A PCA-LSTM neural network-integrated method for phreatic line prediction[J]. ChinaSafety Science Journal, 2020, 30(3):94-101.
|
[10] |
刘传立, 刘小生, 李妍妍. 基于GEP的金属矿尾矿坝变形预测模型研究[J]. 有色金属科学与工程, 2013, 4(6):63-68.
|
|
LIU Chuanli, LIU Xiaosheng, LI Yanyan. Deformation prediction model of metal mine tailings dam based on GEP[J]. Nonferrous Metals Science and Engineering, 2013, 4(6):63-68.
|
[11] |
杜年春, 粟闯. 基于时间序列分析的浸润线预测分析[J]. 电子技术与软件工程, 2013(23):204-205.
|
[12] |
随晓丹, 罗周全, 秦亚光, 等. 基于小波分解的尾矿坝浸润线预测方法研究[J]. 黄金科学技术, 2019, 27(1):137-143.
|
|
SUI Xiaodan, LUO Zhouquan, QIN Yaguang, et al. Study onprediction method of seepage line of tailings dam based on wavelet decomposition[J]. Gold Science and Technology, 2019, 27(1):137-143.
|
[13] |
邹伟霞, 李慧敏. 基于灰色模型GM(1,1)的尾矿坝浸润线预测[J]. 现代矿业, 2011, 27(11):314-316.
|
|
ZOU Weixia, LI Huimin. Saturation line prediction oftailings dam based on grey model (1,1)[J]. Modern Mining, 2011, 27(11): 314-316.
|
[14] |
邱俊博, 胡军. 基于ELM的尾矿坝浸润线预测[J]. 有色金属工程, 2021, 11(2):103-109.
|
|
QIU Junbo, HU Jun. Prediction of phreatic line of tailings dam based on ELM[J]. Nonferrous Metals Engineering, 2021, 11(2): 103-109.
|
[15] |
李春民, 王云海, 张兴凯, 等. 尾矿坝浸润线序列的支持向量机预测研究[J]. 金属矿山, 2010(12):18-21.
|
|
LI Chunmin, WANG Yunhai, ZHANG Xingkai, et al. Prediction of infiltration route series intailings dam by the support vector machine[J]. Metal Mine, 2010(12):18-21.
|
[16] |
SALAMON J, BELLO J. Deepconvolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24(3):279-283.
doi: 10.1109/LSP.2017.2657381
|
[17] |
CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science, 2014:1 724-1 734.
|
[18] |
LOSHCHILOV I, HUTTER F. Fixing weight decay regularization in ADAM[C]. Proceedings in the International Conference on Learning Representations, 2018: 1-4.
|
[19] |
GULCEHRE C, MOCZULSKI M, DENIL M, et al. Noisy Activation Functions[C]. Proceedings in the International Conference on Machine Learning, 2016:3 059-3 068.
|
[20] |
CLEVERT D, UNTERTHINER T, HOCHREITER S. Fast andaccurate deep network learning by exponential linear units (ELUs)[J]. Computer Science, 2015: 1-14.
|
[21] |
HOCHREITER S. Thevanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, 1998, 6(2): 107-116.
|
[22] |
KRAUSE P, BOYLE D P, BÄSE F. Comparison of different efficiency criteria for hydrological model assessment[J]. Advances in Geosciences, 2005, 5(4): 89-97.
doi: 10.5194/adgeo-5-89-2005
|
[23] |
唐成龙, 谌颃, 唐海春, 等. 大数据背景下数据预处理方法研究运用[J]. 信息记录材料, 2021, 22(9):199-200.
|